精英家教网 > 高中数学 > 题目详情
已知
a
b
为单位向量,且夹角为
3
,则向量2
a
+
b
a
的夹角大小是(  )
A、
3
B、
π
2
C、
π
3
D、
π
6
考点:平面向量数量积的运算
专题:平面向量及应用
分析:
a
b
为单位向量,且夹角为
3
,不妨取
a
=(1,0),则
b
=(-
1
2
3
2
)
,再利用向量的坐标运算及其向量夹角公式即可得出.
解答: 解:由
a
b
为单位向量,且夹角为
3

不妨取
a
=(1,0),则
b
=(-
1
2
3
2
)

∴2
a
+
b
=(
3
2
3
2
)

(2
a
+
b
)•
a
=
3
2
|2
a
+
b
|
=
(
3
2
)2+(
3
2
)2
=
3

设向量2
a
+
b
a
的夹角为θ,
∴cosθ=
(2
a
+
b
)•
a
|2
a
+
b
||
a
|
=
3
2
3
×1
=
3
2

∵θ∈[0,π],∴θ=
π
6

故选:D.
点评:本题考查了单位向量、向量的坐标运算及其向量夹角公式,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在R上的增函数,数列{xn}是一个公差为2的等差数列,满足f(x8)+f(x9)+f(x10)+f(x11)=0,则x2013的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察给出的下列各式:
(1)tan10°•tan20°+tan20°•tan60°+tan60°•tan10°=1;
(2)tan5°•tan15°+tan15°•tan70°+tan70°•tan5°=1.
由以上两式成立,你能得到一个什么样的推广?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线的方程是x2=-16y,则抛物线焦点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:
月平均气温x(℃)171382
月销售量y(件)24334055
由表中数据算出线性回归方程
?
y
=bx+a
中的b≈-2.气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月毛衣的销售量约为
 
件.
(参考公式:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列
1
1
1
2
2
1
1
3
2
2
3
1
,…,
1
k
2
k-1
,…,
k
1
,…,则这个数列第2010项的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数f(x)=x-2.在区间(0,+∞)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a=(sin(ωx+φ),2),b=(1,cos(ωx+φ))(ω>0,0<φ<
π
4
),函数f(x)=(a+b)•(a-b)图象过点M(1,
7
2
)
且两条对称轴的最近距离为2.
(Ⅰ)求f(x)的表达式;
(Ⅱ)求函数f(x)在[1,2]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(6-a)x-2a,x<1
logax,x≥1
为R上的增函数,则a的取值范围是
 

查看答案和解析>>

同步练习册答案