精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,已知椭圆的上顶点坐标为,离心率为.

1)求椭圆的标准方程;

2)若椭圆上的点的横坐标为,且位于第一象限,点关于轴的对称点为点是位于直线异侧的椭圆上的动点.

①若直线的斜率为,求四边形面积的最大值;

②若动点满足,试探求直线的斜率是否为定值?说明理由.

【答案】12)①②为定值,见解析

【解析】

1)直接根据椭圆的几何性质求解;

2)由(1)可得点坐标为,则

①设直线方程,联立椭圆方程,设,得韦达定理,表示出四边形面积,从而求出四边形面积最大值为

②由题意可得直线斜率与直线斜率互为相反数,设直线的方程,联立椭圆方程,设,得两根之和,求得,设,同理可得,根据斜率计算公式得直线的斜率为定值

解:(1)由题意,可得

则椭圆的标准方程为

2)由(1)可得点坐标为,则

①设直线方程为,联立椭圆方程

化简可得

,则

∴当时,四边形面积最大值为

②由题意,因为,则直线斜率与直线斜率互为相反数

设直线的方程为,联立椭圆方程

化简可得,设

,又,所以

,同理可得

所以

所以直线的斜率为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂生产两种零件,其质量测试按指标划分,指标大于或等于的为正品,小于的为次品.现随机抽取这两种零件各100个进行检测,检测结果统计如下:

测试指标

零件

8

12

40

30

10

零件

9

16

40

28

7

(Ⅰ)试分别估计两种零件为正品的概率;

(Ⅱ)生产1个零件,若是正品则盈利50元,若是次品则亏损10元;生产1个零件,若是正品则盈利60元,若是次品则亏损15元,在(Ⅰ)的条件下:

(i)设为生产1个零件和一个零件所得的总利润,求的分布列和数学期望;

(ii)求生产5个零件所得利润不少于160元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面平面,底面为梯形, ,且均为正三角形, 的重心.

(1)求证: 平面

(2)求平面与平面所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数上无零点,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数).

(1)若曲线与曲线有两个不同的公共点,求的取值范围;

(2)当时,求曲线上的点与曲线上点的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知都是常数,.若的零点为,则下列不等式正确的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需另投入成本万元,且.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.

1)求出2018年的利润Lx)(万元)关于年产量x(百辆)的函数关系式;(利润=销售额-成本)

22018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2+2alnx.

(1)若函数fx)的图象在(2f2))处的切线斜率为1,求实数a的值;

(2)若函数[12]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数).以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)设动直线分别与曲线相交于点,求当为何值时,取最大值,并求的最大值.

查看答案和解析>>

同步练习册答案