解:(1)当a=1时,
f(x)=|x-2|+bln x
①当0<x<2时,f(x)=-x+2+bln x,
f′(x)=-1+
.
由条件得-1+
≥0恒成立,即b≥x恒成立.
所以b≥2;
②当x≥2时,f(x)=x-2+bln x,
f′(x)=1+
.
由条件得1+
≥0恒成立,即b≥-x恒成立.
所以b≥-2.
因为函数f(x)的图像在(0,+∞)上不间断,综合①②得b的取值范围是[2,+∞).
(2)令g(x)=|ax-2|+ln x-
,即
当0<x<
时,
g(x)=-ax+2+ln x-
,
g′(x)=-a+
+
.
因为0<x<
,所以
>
,
则g′(x)>-a+
+
=
≥0,
即g′(x)>0,所以g(x)在
上是单调增函数;
当x>
时,g(x)=ax-2+ln x-
,
g′(x)=a+
+
>0,
所以g(x)在
上是单调增函数.
因为函数g(x)的图像在(0,+∞)上不间断,所以g(x)在(0,+∞)上是单调增函数.
因为g
=ln
-
,
而a≥2,所以ln
≤0,则g
<0,
g(1)=|a-2|-1=a-3.
①当a≥3时,因为g(1)≥0,所以g(x)=0在(0,1]上有唯一解,即方程f(x)=
解的个数为1;
②当2≤a<3时,因为g(1)<0,所以g(x)=0在(0,1]上无解,即方程f(x)=
解的个数为0.