精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的单调区间;
(2)当时,函数恒成立,求实数的取值范围;
(3)设正实数满足.求证:

(1)当时,只有单调递增区间;
时,单调递增区间为
单调递减区间为
(2)
(3)由(2)知,恒成立,构造函数来求证不等式。

解析试题分析:
1) 
 ,   1分
的判别式
①当时,恒成立,则单调递增; 2分
②当时,恒成立,则单调递增;   3分
③当时,方程的两正根为
单调递增,单调递减,单调递增.
综上,当时,只有单调递增区间;
时,单调递增区间为
单调递减区间为.    5分
(2)即时,恒成立.
时,单调递增,
∴当时,满足条件.  7分
时,单调递减,
单调递减,
此时不满足条件,
故实数的取值范围为.                             9分
(3)由(2)知,恒成立,
 ,则  ,     10分
.                 11分

 ,                      13分
 .                                     14分
考点:导数的运用
点评:主要是考查了导数在研究函数单调性中的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
若函数上是增函数,在是减函数,求的值;
讨论函数的单调递减区间;
如果存在,使函数,在处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足:),
(1)用反证法证明:不可能为正比例函数;
(2)若,求的值,并用数学归纳法证明:对任意的,均有:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2﹣|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若不等式的解集.求的值;
(2)若的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数。
(1)求实数a的值;
(2)判断函数在R上的单调性并用定义法证明;
(3)若函数的图像经过点,这对任意不等式恒成立,求实数m的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为常数.
(Ⅰ)当时,判断函数在定义域上的单调性;
(Ⅱ)当时,求的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,证明:对
(2)若,且存在单调递减区间,求的取值范围;
(3)数列,若存在常数,都有,则称数列有上界。已知,试判断数列是否有上界.

查看答案和解析>>

同步练习册答案