精英家教网 > 高中数学 > 题目详情
16.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2,P为椭圆C上任意一点.
(1)当PF1⊥PF2时,PF1=$\sqrt{2}$,且PF2所在的弦|PQ|=$\frac{4\sqrt{2}}{3}$,求椭圆C的方程.
(2)若EF为圆N:x2+(y-2)2=1的任意一条直径,请求$\overrightarrow{PE}$•$\overrightarrow{PF}$的最大值.

分析 (1)可连接QF1,根据条件便可求出$Q{F}_{1}=\frac{5\sqrt{2}}{3}$,从而由PF1+PQ+QF1=4a便可得出a的值,而根据离心率为$\frac{\sqrt{2}}{2}$又可求出c,从而求出b,这样便可得出椭圆的方程;
(2)根据条件知N(0,2),可设P(x,y),从而可以求出${\overrightarrow{NP}}^{2}=-\frac{{c}^{2}}{{b}^{2}}•{y}^{2}-4y+4+{a}^{2}$,而根据向量减法的几何意义及EF为圆的直径便可得到$\overrightarrow{PE}•\overrightarrow{PF}={\overrightarrow{NP}}^{2}-1$,再根据离心率为$\frac{\sqrt{2}}{2}$可以得到b=c,从而得出$\overrightarrow{PE}•\overrightarrow{PF}=-{y}^{2}-4y+3+{a}^{2}$,这样通过配方便可求出$\overrightarrow{PE}•\overrightarrow{PF}$的最大值.

解答 解:(1)如图,连接QF1

∵PF1⊥PF2,$P{F}_{1}=\sqrt{2}$,$PQ=\frac{4\sqrt{2}}{3}$;
∴$Q{F}_{1}=\frac{5\sqrt{2}}{3}$;
∵PF1+PF2+QF1+QF2=4a;
∴$\sqrt{2}+\frac{4\sqrt{2}}{3}+\frac{5\sqrt{2}}{3}=4a$;
∴$a=\sqrt{2}$;
又$\frac{c}{a}=\frac{\sqrt{2}}{2}$;
∴$c=\frac{\sqrt{2}}{2}a=1$;
∴b2=1;
∴椭圆C的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)由题意可得,N(0,2),设P(x,y),则:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$;
∴${x}^{2}={a}^{2}-\frac{{a}^{2}}{{b}^{2}}•{y}^{2}$;
∴${\overrightarrow{NP}}^{2}={x}^{2}+(y-2)^{2}$=$-\frac{{c}^{2}}{{b}^{2}}•{y}^{2}-4y+4+{a}^{2}$;
∴$\overrightarrow{PE}•\overrightarrow{PF}=(\overrightarrow{NE}-\overrightarrow{NP})•(\overrightarrow{NF}-\overrightarrow{NP})$=$(-\overrightarrow{NF}-\overrightarrow{NP})•(\overrightarrow{NF}-\overrightarrow{NP})$
=${\overrightarrow{NP}}^{2}-{\overrightarrow{NF}}^{2}={\overrightarrow{NP}}^{2}-1$=$-\frac{{c}^{2}}{{b}^{2}}•{y}^{2}-4y+3+{a}^{2}$;
∵$\frac{c}{a}=\frac{\sqrt{2}}{2}$;
∴$a=\sqrt{2}c$;
∴b2=c2
∴$\overrightarrow{PE}•\overrightarrow{PF}=-{y}^{2}-4y+3+{a}^{2}$=-(y+2)2+7+a2
∴y=-2时,$\overrightarrow{PE}•\overrightarrow{PF}$取得最大值7+a2

点评 考查椭圆的标准方程,椭圆的离心率,以及椭圆的焦点,椭圆的定义,圆的标准方程,向量减法的几何意义,向量数量积的运算,相反向量的概念,以及配方求二次函数最值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则它的母线长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=|x+1|+|x-1|,不等式f(x)<4解集为M
(1)求M;
(2)若不等式f(x)+a<0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设△ABC的面积S=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{4}$,角A,B,C所对的边为a,b,c且c=$\sqrt{2}$a.
(1)求角C的大小;
(2)若△ABC内一点P满足AP=AC,BP=CP,求∠PAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{2}$sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间(0,π)上的单调区间;
(3)当x∈[0,$\frac{π}{2}$]时,函数g(x)=f(x)-k恰有两个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:y=$\frac{1}{4}$x2的焦点为F,点P为抛物线C上一个动点,过点P且与抛物线C相切的直线记为l.
(1)求F的坐标;
(2)当点P在何处时,点F到直线L的距离最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.说明函数y=cos(2x-$\frac{π}{4}$)的图象,由y=sin2x的图象怎样变化而来.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,$\overrightarrow{AE}$=$\frac{1}{5}$$\overrightarrow{AB}$,EF∥BC,EF交AC于F,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{BF}$可以用$\overrightarrow{a}$,$\overrightarrow{b}$表示的形式是$\overrightarrow{BF}$=$-\overrightarrow{a}$$+\frac{1}{5}$$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足:a1=$\frac{3}{2}$,且an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}$(n≥2,n∈N*).证明:{1-$\frac{n}{{a}_{n}}$}为一个等比数列,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案