精英家教网 > 高中数学 > 题目详情
证明下列不等式:
(1)若x,y,z∈R,a,b,c∈R+,则z2≥2(xy+yz+zx)
(2)若x,y,z∈R+,且x+y+z=xyz,则≥2(
【答案】分析:(1)把不等式的左边减去右边,配方为3个完全平方的和的形式,大于或等于零,从而得到不等式的左边大于或等于右边
(2)根据条件,把要证的不等式等价转化为yz(y-z)2+xz(x-z)2+xy(x-y)2+x2(y-z)2+y2(x-z)2+z2(y-x)2≥0,而此式显然成立,从而不等式得证.
解答:证明:(1)若x,y,z∈R,a,b,c∈R+
-2(xy+yz+xz)=()+()+(
=++≥0,
z2≥2(xy+yz+zx)成立.
(2)若x,y,z∈R+,且x+y+z=xyz,要证的不等式等价于≥2(),
等价于 yz(y+z)+xz(x+z)+xy(x+y)≥2(yz+xz+xy),
等价于xyz[yz(y+z)+xz(x+z)+xy(x+y)]≥2(yz+xz+xy)2
等价于(x+y+z)(y2z+yz2+x2z+xz2+x2y+xy2)≥2(x2y2+z2y2+z2x2)+4(x2yz+y2xz+z2xy),
等价于y3z+yz3+x3z+xz3+x3y+xy3≥2x2yz+2y2xz+2z2xy,
等价于yz(y-z)2+xz(x-z)2+xy(x-y)2+x2(y-z)2+y2(x-z)2+z2(y-x)2≥0.
而上式显然成立,故原不等式成立.
∵上式显然成立,∴原不等式得证.
点评:本题主要考查用综合法证明不等式成立,式子的变形是解题的关键和难点,体现了等价转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

证明下列不等式:
(1)a,b都是正数,且a+b=1,求证:(1+
1
a
)(1+
1
b
)≥9

(2)设实数x,y满足y+x2=0,且0<a<1,求证:loga(ax+ay)<
1
8
+loga2

查看答案和解析>>

科目:高中数学 来源: 题型:

证明下列不等式.
(1)求证:当a、b、c为正数时,(a+b+c)(
1
a
+
1
b
+
1
c
)≥9.
(2)已知n≥0,试用分析法证明:
n+2
-
n+1
n+1
-
n

查看答案和解析>>

科目:高中数学 来源: 题型:

证明下列不等式:
(1)对任意的正实数a,b,有
1
1+a
1
1+b
-
a-b
(1+b)2

(2)
C
0
n
50
50+1
+
C
1
n
51
51+1
+
C
2
n
52
52+1
+…+
C
n
n
5n
5n+1
2n5n
3n+5n
,n∈N.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•太原模拟)证明下列不等式:
(1)用分析法证明:
3
+
8
>1+
10

(2)已知a,b,c是不全相等的正数,证明a2+b2+c2>ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明下列不等式:
(1)若x,y,z∈R,a,b,c∈R+,则
b+c
a
x2+
c+a
b
y2+
a+b
c
z2≥2(xy+yz+zx)
(2)若x,y,z∈R+,且x+y+z=xyz,则
y+z
x
+
z+x
y
+
x+y
z
≥2(
1
x
+
1
y
+
1
z

查看答案和解析>>

同步练习册答案