精英家教网 > 高中数学 > 题目详情

【题目】已知圆M:(x+cos2+(y-sin2=1,直线lykx,下面四个命题:

(A)对任意实数k,直线l和圆M相切;

(B)对任意实数k,直线l和圆M有公共点;

(C)对任意实数必存在实数k,使得直线l与和圆M相切;

(D)对任意实数k必存在实数,使得直线l与和圆M相切.

其中真命题的代号是______________(写出所有真命题的代号).

【答案】(B)(D)

【解析】

根据圆的方程找出圆心坐标和圆的半径,然后求出圆心到已知直线的距离利用两角和的正弦函数公式化为一个角的正弦函数与半径比较大小即可得到直线与圆的位置关系,得到正确答案即可.

由题意可得圆心坐标为,圆的半径为1,且圆心到直线的距离为(其中).

∴直线与圆有公共点,且对于任意实数,必存在实数,使直线与圆相切.

故答案为(B)(D).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知各项均不相等的等差数列{an}满足a1=1,且a1 , a2 , a5成等比数列.
(1)求{an}的通项公式;
(2)若bn=(﹣1)n (n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左焦点为,左准线方程为.

(1)求椭圆的标准方程;

(2)已知直线交椭圆 两点.

①若直线经过椭圆的左焦点,交轴于点,且满足 .求证: 为定值;

②若为原点),求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选拔选手参加“中国汉字听写大全”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,每次抽取1人,求在第1次抽取的成绩低于90分的前提下,第2次抽取的成绩仍低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一辆赛车在一个周长为的封闭跑道上行驶,跑道由几段直道和弯道组成,图反映了赛车在“计时赛”整个第二圈的行驶速度与行驶路程之间的关系.

图1

图2

根据图有以下四个说法:

在这第二圈的之间,赛车速度逐渐增加;

在整个跑道中,最长的直线路程不超过

大约在这第二圈的之间,赛车开始了那段最长直线路程的行驶;

在图的四条曲线(注:为初始记录数据位置)中,曲线最能符合赛车的运动轨迹.

其中,所有正确说法的序号是(

A. ①②③ B. ②③ C. ①④ D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过A(0,1)和且与x轴相切的圆只有一个,求的值及圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业投资公司拟开发某种新能源产品,估计能获得万元到万元的投资利益,现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过收益的

)请分析函数是否符合公司要求的奖励函数模型,并说明原因.

)若该公司采用函数模型作为奖励函数模型,试确定最小正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为4的正方形与矩形所在平面互相垂直,分别为的中点,

1)求证:平面

2)求证:平面

(3)在线段上是否存在一点,使得?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为( ) 参考数据: ,sin15°≈0.2588,sin7.5°≈0.1305.

A.12
B.24
C.48
D.96

查看答案和解析>>

同步练习册答案