精英家教网 > 高中数学 > 题目详情

【题目】如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从中剪裁出两块全等的圆形铁皮做圆柱的底面,剪裁出一个矩形做圆柱的侧面(接缝忽略不计),为圆柱的一条母线,点上,点的一条直径上,分别与直线相切,都与内切.

1)求圆形铁皮半径的取值范围;

2)请确定圆形铁皮半径的值,使得油桶的体积最大.(不取近似值)

【答案】1;(2

【解析】

1)记切于点,记的半径为,根据得到,解得答案.

2,设,求导得到单调性得到最值.

1)记切于点,记的半径为

要想围成圆柱,则,即

解得,即半径的取值范围为.

2

,令,得

所以当时,递增,

所以在定义域上,体积随着的增大而增大,所以时,体积最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校进行自主招生测试,报考学生有500人,其中男生300人,女生200人,为了研究学生的成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们测试的分数,然后按性别分为男、女两组,再将两组学生的分数分成4组:分别加以统计,得到如图所示的频率分布直方图.

(Ⅰ)根据频率分布直方图可以估计女生测试成绩的平均值为103.5,请你估计男生测试成绩的平均值,由此推断男、女生测试成绩的平均水平的高低;

(Ⅱ)若规定分数不小于110分的学生为优秀生,请你根据已知条件完成列联表,并判断是否有的把握认为优秀生与性别有关

优秀生

非优秀生

合计

男生

女生

合计

参考公式:.

参考数据:

P

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:

班级

参赛人数

平均数

中位数

众数

方差

45

83

86

85

82

45

83

84

85

133

某同学分析上表后得到如下结论:

①甲、乙两班学生的平均成绩相同;

②乙班优秀的人数少于甲班优秀的人数(竞赛得分分为优秀);

③甲、乙两班成绩为85分的学生人数比成绩为其他值的学生人数多;

④乙班成绩波动比甲班小.

其中正确结论有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆柱底面半径为1,高为是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线如图所示.将轴截面绕着轴逆时针旋转后,边与曲线相交于点.

1)求曲线的长度;

2)当时,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.

)求k的取值范围;

)设CW上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,.在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的偶函数满足,且,当时,.已知方程在区间上所有的实数根之和为.将函数的图象向右平移个单位长度,得到函数的图象,则____________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数fx)的图象在点(2f2))处的切线方程为9xy+b0,求实数ab的值;

2)若a≤0,求fx)的单调减区间;

3)对一切实数a∈(01),求fx)的极小值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人投篮命中的概率分别为,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.

(1)求比赛结束后甲的进球数比乙的进球数多1的概率;

(2)设表示比赛结束后甲、乙两人进球数的差的绝对值,求的概率分布和数学期望.

查看答案和解析>>

同步练习册答案