精英家教网 > 高中数学 > 题目详情
19.A,B两地之间隔着一个水塘(如图),现选择另一点C,测得CA=10$\sqrt{7}$km,CB=10km,∠CBA=60°求A、B两点之间的距离.

分析 过C作CD⊥AB于D,使用勾股定理依次解出BD,CD,AD,则AB=AD+BD.

解答 解:过C作CD⊥AB于D
∵∠CBA=60°,∴BD=5km,CD=5$\sqrt{3}$km.
在Rt△ACD中,AD=$\sqrt{A{C}^{2}-C{D}^{2}}$=25km.
∴AB=AD+BD=30km.

点评 本题考查利用数学知识解决实际问题,考查勾股定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{x^2}{1+x^2}$,
(1)求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$)的值;
(2)求证f(x)+f($\frac{1}{x}$)是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.高二数学期中测试中,为了了解学生的考试情况,从中抽取了n个学生的成绩(满分为100分)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中x,y的值;
(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆中心在原点,焦点在坐标轴上,焦距为$2\sqrt{13}$,另一双曲线与椭圆有公共焦点,且椭圆半长轴比双曲线的半实轴大4,椭圆离心率与双曲线的离心率之比为3:7,求椭圆方程和双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知矩阵$[\begin{array}{l}{1}&{2}\\{2}&{a}\end{array}]$的属于特征值b的一个特征向量为$[\begin{array}{l}{1}\\{1}\end{array}]$,求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知A、B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为$\frac{125}{6}$,则球O的表面积为100π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是一个几何体的三视图,根据图中的数据可得该几何体的体积为(  ) 
A.36πB.34πC.32πD.30π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)是定义在R上的偶函数,在[0,+∞)上单调递减,且f(2)=0,若f(x-1)>0,则x的取值范围为(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某初级中学共有学生2000名,各年级男、女生人数如表:
初一年级初二年级初三年级
女生373xy
男生377370z
在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19,已知y≥245,z≥245,则初三年级中女生比男生多的概率为$\frac{5}{11}$.

查看答案和解析>>

同步练习册答案