设分别是椭圆的 左,右焦点。
(1)若P是该椭圆上一个动点,求的 最大值和最小值。
(2)设过定点M(0,2)的 直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l斜率k的取值范围。
科目:高中数学 来源: 题型:解答题
圆的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).
(1)求点P的坐标;
(2)焦点在x轴上的椭圆C过点P,且与直线交于A,B两点,若的面积为2,求C的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点,两个焦点为,.
(1)求椭圆的方程;
(2),是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;
(3)设点、是抛物线上的动点,点是抛物线与轴正半轴交点,是以为直角顶点的直角三角形.试探究直线是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线上有一点到焦点的距离为.
(1)求及的值.
(2)如图,设直线与抛物线交于两点,且,过弦的中点作垂直于轴的直线与抛物线交于点,连接.试判断的面积是否为定值?若是,求出定值;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(已知抛物线()的准线与轴交于点.
(1)求抛物线的方程,并写出焦点坐标;
(2)是否存在过焦点的直线(直线与抛物线交于点,),使得三角形的面积?若存在,请求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,离心率为的椭圆上的点到其左焦点的距离的最大值为3,过椭圆内一点的两条直线分别与椭圆交于点、和、,且满足,其中为常数,过点作的平行线交椭圆于、两点.
(1)求椭圆的方程;
(2)若点,求直线的方程,并证明点平分线段.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com