精英家教网 > 高中数学 > 题目详情
设a为函数y=sinx+
3
cosx(x∈R)
的最大值,则二项式(a
x
-
1
x
)6
的展开式中含x2项的系数是(  )
A、192B、182
C、-192D、-182
分析:首先根据两角和的正弦公式,可得a=2,进而可得二项展开式的通项公式,令3-r=2,得r=1,将r=1代入二项展开式可得答案.
解答:解:因为sinx+
3
cosx=2sin(x+
π
3
)
,由题设a=2,
则二项展开式的通项公式为Tr+1=
C
r
6
(a
x
)6-r•(-
1
x
)r=(-1)r
C
r
6
a6-rx3-r

令3-r=2,得r=1,
所以含x2项的系数是(-1)×C61•25=-192,
故选C.
点评:本题考查二项式定理的应用,涉及两角和与差的公式,难度不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)
,最大值与最小值的差为4,相邻两个最低点之间距离为π,且函数y=sin(2x+
π
3
)
图象所有的对称中心都在y=f(x)图象的对称轴上.
(1)求f(x)的表达式;
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
])
,求cos(x0-
π
3
)
的值;
(3)设
a
=(f(x-
π
6
),1)
b
=(1,mcosx)
x∈(0,
π
2
)
,若
a
b
+3≥0
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中所有正确命题的序号是

①函数y=sin(2x-
π
3
)的周期为π,且图象关于直线x=
π
3
对称;
②设ω>0,将函数f(x)=sin(ωx+3)+1的图象向左平移
3
个单位后与原图象重合,则ω 的最小值是2;
③在△ABC中,A>B是sinA>sinB的即不充分也不必要条件;
④函数y=2tan(
x
2
+
π
4
)的一个对称中心是(
π
2
,0);
⑤如果函数y=sin x+acosx的图象关于直线x=-
π
6
 对称,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:a>b>0的必要条件是
1
a
1
b
;命题q:函数y=sin(2x-
π
6
)+1
的图象关于直线x=
π
12
对称,则下列命题中为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
(1)函数y=-sin(kπ+x)(k∈Z)是奇函数;
(2)函数f(x)=tanx的图象关于点(kπ+
π
2
,0)(k∈Z)
对称;
(3)函数f(x)=sin|x|是最小正周期为π的周期函数;
(4)设θ是第二象限角,则tan
θ
2
>cot
θ
2
,且sin
θ
2
>cos
θ
2

(5)函数y=cos2x+sinx的最小值是-1.
其中正确的命题是(  )

查看答案和解析>>

同步练习册答案