如图,在三棱锥中,平面平面,,.设,分别为,中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面;
(Ⅲ)试问在线段上是否存在点,使得过三点 ,,的平面内的任一条直线都与平面平行?若存在,指出点的位置并证明;若不存在,请说明理由.
(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)存在,点是线段中点。
解析试题分析:(Ⅰ)由中位线直接可得∥,由线面平行的判定定理可直接证得∥平面。(Ⅱ)根据线面垂直的判定定理需证和面内的两条相交直线都垂直。已知条件中已有,又因为已知平面平面,,由面面垂直的性质定理可得面,有线面垂直可得线线垂直。问题即可得证。(Ⅲ)要使得过三点 ,,的平面内的任一条直线都与平面平行,只需证面DEF与面PBC平行即可。根据面面平行的定理,需证面DEF内的两条相交线都和面PBC平行。第一问中已征得∥平面,根据第一问的思路,F别为AB的中点,就可同(Ⅰ)证出PF与面PBC平行。
试题解析:证明:
(Ⅰ)因为点是中点,点为的中点,
所以∥.
又因为面,面,
所以∥平面. 4分
(Ⅱ)因为平面面, 平面平面=,又平面,,所以面.
所以.
又因为,且,
所以面. 9分
(Ⅲ)当点是线段中点时,过点,,的平面内的任一条直线都与平面平行.
取中点,连,连.
由(Ⅰ)可知∥平面.
因为点是中点,点为的中点,
所以∥.
又因为平面,平面,
所以∥平面.
又因为,
所以平面∥平面,
所以平面内的任一条直线都与平面平行.
故当点
科目:高中数学 来源: 题型:解答题
已知三棱柱中,平面⊥平面ABC,BC⊥AC,D为AC的中点,AC=BC=AA1=A1C=2。
(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B与平面A1BC的夹角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2.
(1)求证:A'C//平面AB'D;
(2)求二面角D一AB'一B的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
(I)求证:EF∥平面BDC1;
(II)求二面角E-BC1-D的余弦值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com