精英家教网 > 高中数学 > 题目详情

【题目】已知的展开式中的第二项和第三项的系数相等.

(1)求的值;

(2)求展开式中所有二项式系数的和;

(3)求展开式中所有的有理项.

【答案】(1)5;(2)32;(3)见解析

【解析】

(1)根据展开式中的第二项和第三项的系数相等,列出方程求出n的值;
(2)利用展开式中所有二项式系数的和为2n,即可求出结果;
(3)根据二项式展开式的通项公式,求出展开式中所有的有理项

二项式展开式的通项公式为

r=0,1,2,…,n);

1)根据展开式中的第二项和第三项的系数相等,得 解得n=5;

2)展开式中所有二项式系数的和为

3)二项式展开式的通项公式为r=0125

r=0,2,4时,对应项是有理项,

所以展开式中所有的有理项为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各2张,让孩子从盒子里任取3张卡片,按卡片上最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字

(1)求取出的3张卡片上的数字互不相同的概率;

(2)求随机变量x的分布列;

(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的公差为d,关于x的不等式 x2+(a1 )x+c≥0的解集是[0,22],则使得数列{an}的前n项和大于零的最大的正整数n的值是(
A.11
B.12
C.13
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校食堂早餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为________(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求f(x)在[1,m](m>1)上的最小值;
(2)若关于x的不等式f2(x)﹣nf(x)>0有且只有三个整数解,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下命题:

若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};

若函数f(x)是偶函数,则f(|x|)=f(x);

若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;

若函数fx)存在反函数f1x),且f1x)与fx)不完全相同,则fx)与f1x)图象的公共点必在直线y=x上;

其中真命题的序号是 .(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n,都有an= +2成立.
(1)记bn=log2an , 求数列{bn}的通项公式;
(2)设cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,x∈(b﹣3,2b)是奇函数,

(1)求a,b的值;

(2)若f(x)是区间(b﹣3,2b)上的减函数且f(m﹣1)+f(2m+1)>0,求实数m的取值范围.

查看答案和解析>>

同步练习册答案