精英家教网 > 高中数学 > 题目详情
已知抛物线C:x2=2py(p>0)的焦点为F,A、B是抛物线C上异于坐标原点O的不同两点,抛物线C在点A、B处的切线分别为l1、l2,且l1⊥l2,l1与l2相交于点D.
(1)求点D的纵坐标;
(2)证明:A、B、F三点共线;
(3)假设点D的坐标为,问是否存在经过A、B两点且与l1、l2都相切的圆,若存在,求出该圆的方程;若不存在,请说明理由.
【答案】分析:(1)设点A、B的坐标分别为(x1,y1)、(x2,y2),利用导数求出切线的斜率,进而求出直线l1、l2的方程,通过解它们联立的方程组即可求得求点D的纵坐标;
(2)欲证明:A、B、F三点共线,只须证明它们的斜率kAF=kBF.相等即可,也就是要证明kAF-kBF=0即可,利用斜率公式结合点在抛物线上可证得;
(3)对于存在性问题,可假设存在,即假设存在符合题意的圆,设该圆的圆心为M,再分别求出点A、B的坐标,最后求出|AD|和|BD|,看是否与题设矛盾,若不矛盾,则存在,否则不存在.
解答:(1)解:设点A、B的坐标分别为(x1,y1)、(x2,y2),
∵l1、l2分别是抛物线C在点A、B处的切线,
∴直线l1的斜率,直线l2的斜率
∵l1⊥l2,∴k1k2=-1,得x1x2=-p2.①(2分)
∵A、B是抛物线C上的点,

∴直线l1的方程为,直线l2的方程为
解得
∴点D的纵坐标为.(4分)

(2)证:∵F为抛物线C的焦点,∴
∴直线AF的斜率为
直线BF的斜率为
(6分)====0.
∴kAF=kBF
∴A、B、F三点共线.(8分)
(3)解:不存在.证明如下:
假设存在符合题意的圆,设该圆的圆心为M,
依题意得MA⊥AD,MB⊥BD,且|MA|=|MB|,
由l1⊥l2,得AD⊥BD.
∴四边形MADB是正方形.
∴|AD|=|BD|.(10分)
∵点D的坐标为
,得p=2.
把点D的坐标代入直线l1,得
解得x1=4或x1=-1,
∴点A的坐标为(4,4)或
同理可求得点B的坐标为(4,4)或
由于A、B是抛物线C上的不同两点,不妨令,B(4,4).
.(13分)
∴|AD|≠|BD|,这与|AD|=|BD|矛盾.
∴经过A、B两点且与l1、l2都相切的圆不存在.(14分)
点评:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等   突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0),其焦点F到准线的距离为
12

(1)试求抛物线C的方程;
(2)设抛物线C上一点P的横坐标为t(t>0),过P的直线交C于另一点Q,交x轴于M,过点Q作PQ的垂线交C于另一点N,若MN是C的切线,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=
12
y
和定点P(1,2),A、B为抛物线C上的两个动点,且直线PA和PB的斜率为非零的互为相反数.
(I)求证:直线AB的斜率是定值;
(II)若抛物线C在A、B两点处的切线相交于点M,求M的轨迹方程;
(III)若A′与A关于y轴成轴对称,求直线A′B与y轴交点P的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py,过点A(0,4)的直线l交抛物线C于M,N两点,且OM⊥ON.
(1)求抛物线C的方程;
(2)过点N作y轴的平行线与直线y=-4相交于点Q,若△MNQ是等腰三角形,求直线MN的方程.K.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=ay(a>0),斜率为k的直线l经过抛物线的焦点F,交抛物线于A,B两点,且抛物线上一点M(2
2
 , m) (m>1)
到点F的距离是3.
(Ⅰ)求a的值;
(Ⅱ)若k>0,且
AF
=3
FB
,求k的值.
(Ⅲ)过A,B两点分别作抛物线的切线,这两条切线的交点为点Q,求证:
AB
 • 
FQ
=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2my(m>0)和直线l:y=x-m没有公共点(其中m为常数).动点P是直线l上的任意一点,过P点引抛物线C的两条切线,切点分别为M、N,且直线MN恒过点Q(1,1).
(1)求抛物线C的方程;
(2)已知O点为原点,连接PQ交抛物线C于A、B两点,求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

同步练习册答案