精英家教网 > 高中数学 > 题目详情

【题目】将函数f(x)=2sin(2x﹣)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,则b的最小值为

【答案】
【解析】将函数f(x)=2sin(2x﹣)的图象向左平移个单位,可得y=2sin[2(x+)﹣]=2sin2x的图象;
再向上平移1个单位,得到函数y=g(x)=2sin2x+1的图象,
再由y=g(x)在[0,b](b>0)上至少含有10个零点,可得方程sin2x=﹣至少有10个解,
则b的最小值4×π+=
所以答案是:
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为,点在椭圆上,且满足,当变化时,给出下列三个命题:

①点的轨迹关于轴对称;②的最小值为2;

③存在使得椭圆上满足条件的点仅有两个,

其中,所有正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,“cosA>cosB”是“sinA<sinB”的 (  )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=1,2,3)次射击时击中目标得4﹣i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=2sinωx),其中常数ω0

1)令ω=1,判断函数的奇偶性,并说明理由;

2)令ω=2,将函数y=fx)的图象向左平移个单位,再向上平移1个单位,得到函数y=gx)的图象,对任意a∈R,求y=gx)在区间[aa+10π]上零点个数的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆轴交于两点(的上方),直线

(1)当时,求直线被圆截得的弦长;

(2)若,点为直线上一动点(不在轴上),直线的斜率分别为,直线与圆的另一交点分别

①问是否存在实数,使得成立?若存在,求出的值;若不存在,说明理由;

②证明:直线经过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

563

6.8

298.8

1.6

1469

108.8

表中

(1)根据散点图判断,哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)以知这种产品的年利率的关系为.根据(2)的结果求年宣传费时,年销售量及年利润的预报值是多少?

附:对于一组数据……,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中点.
(Ⅰ)求证:DE⊥平面PBC;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.

查看答案和解析>>

同步练习册答案