精英家教网 > 高中数学 > 题目详情

【题目】如图,已知直三棱柱ABC﹣A1B1C1的侧面ACC1A1是正方形,AC=BC,点O是侧面ACC1A1的中心,∠ACB= ,M在棱BC上,且MC=2BM=2.

(1)证明BC⊥AC1
(2)求OM的长度.

【答案】
(1)证明:因为ABC﹣A1B1C1是直三棱柱,

所以CC1⊥底面ABC,

所以CC1⊥BC,

又∠ACB= ,即BC⊥AC,

而CC1,AC面ACC1A1,且CC1∩AC=C,

所以BC⊥面ACC1A1

而AC1面ACC1A1

所以BC⊥AC1


(2)解:由(1)可知BC⊥OC,

因为MC=2,OC=

所以OM= =


【解析】(1)推导出CC1⊥BC,BC⊥AC,从而BC⊥面ACC1A1 , 进而BC⊥AC1;(2)由(1)可知BC⊥OC,利用勾股定理求OM的长度.
【考点精析】认真审题,首先需要了解棱柱的结构特征(两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(Ⅰ)设为曲线上任意一点,求的取值范围;

(Ⅱ)若直线与曲线交于两点 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,关于的不等式的解集为其中

(1)求的值;

(2)令,若函数存在极值点,求实数的取值范围,并求出极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:

(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;

(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,关于的不等式的解集为其中

(1)求的值;

(2)令,若函数存在极值点,求实数的取值范围,并求出极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在二项式(axm+bxn12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展开式里最大系数项恰是常数项.
(1)求它是第几项;
(2)求 的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kax(k为常数,a>0且a≠1)的图象过点A(0,1)和点B(2,16).
(1)求函数的解析式;
(2)g(x)=b+ 是奇函数,求常数b的值;
(3)对任意的x1 , x2∈R且x1≠x2 , 试比较 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga|x+1|(a>0且a≠1),当x∈(0,1)时,恒有f(x)<0成立,则函数g(x)=loga(﹣ x2+ax)的单调递减区间是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】化简求值
(1)计算: ﹣( 0+0.2 ×( 4
(2)已知x +x =3,求 的值.

查看答案和解析>>

同步练习册答案