精英家教网 > 高中数学 > 题目详情
设A={x|-1≤x≤4},B={x|m-1<x<3m+1},
(1)当x∈N*时,求A的子集的个数;
(2)当x∈R且A∩B=B时,求m的取值范围.
分析:对(1),根据集合表示求出集合A,解决即可.
对(2),利用分类讨论分析m满足的条件,然后综合答案.
解答:解:(1)当x∈N*时,A={1,2,3,4},
A中有4个元素,所以A的子集的个数为24=16个.
(2)当x∈R且A∩B=B,则B⊆A,
当m≤-1时,m-1≥3m+1,B=∅,B⊆A;
当m>-1时,B≠∅,B⊆A,m满足
m-1≥-1
3m+1≤4
⇒0≤m≤1
综上,m的取值范围是:m≤-1或0≤m≤1.
点评:本题主要考查集合关系中的参数取值问题.此类题常用分类讨论思想求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A={x|-1≤x≤4},B={x|m-1<x<3m+1},
(1)当x∈N*时,求A的子集的个数;
(2)当x∈R且A∩B=B时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京师大二附中高一(上)第一次段考数学试卷(解析版) 题型:选择题

设A={x|-1≤x≤3},B={x|0<x<4},则A∪B=( )
A.{x|0<x≤3}
B.{x|-1≤x<4}
C.{x|-1≤x<4或x≠0}
D.{x|3≤x<4}

查看答案和解析>>

同步练习册答案