精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)求函数的最小值;

)设),讨论函数的单调性;

)若斜率为的直线与曲线交于两点,其中,求证:

【答案】;(时,在区间内是增函数,当时,内单调递增,在内单调递减.见解析.

【解析】

试题分析:求函数的导数,由求函数的单调区间与单调性,从而可得由已知可知,分分别讨论导数的符号可得函数的单调区间;,则不等式,令,只要证不等式)即可,分别构造函数)与),可证成立.

试题解析: ),……(1分)

,得

时,;当时,

内递减,在内递增,…………(2分)

所以当时,函数取得最小值,且……(3分)

),…………(4分)

时,恒有在区间内是增函数;……(5分)

时,令,即,解得

,即,解得………(6分)

综上,当时,在区间内是增函数,当时,内单调递增,在内单调递减.………(7分)

)证明:,要证明

即证………(8分)

等价于,令(由,知),

则只需证,由,知,故等价于)(……(9分)

),则),所以内是增函数,当时,,所以…………(10分)

),则),所以内是增函数,所以当时,,即).……(11分)

①②知()成立,所以……(12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我们知道:人们对声音有不同的感觉,这与它的强度有关系.声音的强度用瓦/2 ()表示,但在实际测量时,常用声音的强度水平表示,它们满足以下公式: (单位为分贝, ,其中,这是人们平均能听到的最小强度,是听觉的开端).回答以下问题:

(1)树叶沙沙声的强度是,耳语的强度是,恬静的无线电广播的强度是,试分别求出它们的强度水平;

(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度的范围为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于θ的方程cosθ+sinθ+a=0在区间(0,2π)内有相异的两个实根α、β.

(1)求实数a的取值范围;

(2)求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2.

(I)若f(x)在x=1处有极值10,求a,b的值;

(II)若当a=-1时,f(x)<0在x∈[1,2]恒成立,求b的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的最小值为1f(0)f(2)3.

(1)f(x)的解析式

(2)f(x)在区间[2aa1]上不单调求实数a的取值范围

(3)在区间[1,1]yf(x)的图象恒在y2x2m1的图象上方试确定实数m的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任取两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都放入盒中,则( )

A. 乙盒中红球与丙盒中黑球一样多

B. 乙盒中黑球不多于丙盒中黑球

C. 乙盒中红球不多于丙盒中红球

D. 乙盒中黑球与丙盒中红球一样多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期七

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;

(2)(i)利用(1)所求的回归方程,预测该市车流量为8万辆时的浓度;

(ii)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数)

参考公式:回归直线的方程是,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,以轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为

1)求曲线的直角坐标方程并指出其形状;

2)设是曲线上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中抽取80名学生的数学成绩(均为整数)的频率分布直方图如图所示.

(Ⅰ)估计这次月考数学成绩的平均分和众数;

(Ⅱ)假设抽出学生的数学成绩在段各不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数字中任意抽取2个数,有放回地抽取3次,记这3次抽取中恰好有两名学生的数学成绩的次数为,求的分布列和期望.

查看答案和解析>>

同步练习册答案