精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=f(x﹣1)的图象关于直线x=1对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立若a=(20.2)f(20.2),b=(1n2)f(1n2),c=( )f( ),则a,b,c的大小关系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

【答案】B
【解析】解:∵函数y=f(x﹣1)的图象关于直线x=1对称,∴函数y=f(x)的图象关于y轴对称,是偶函数.
令g(x)=xf(x),则当x∈(﹣∞,0)时,g′(x)=f(x)+xf′(x)<0,∴函数g(x)在x∈(﹣∞,0)单调递减,
因此函数g(x)在(0,+∞)上单调递减.
=2>20.2>1>ln2>0.
∴c<a<b.
故选B.
【考点精析】根据题目的已知条件,利用函数单调性的性质和利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C经过点A(2,3)、B(4,0),对称轴为坐标轴,焦点F1、F2在x轴上.
(1)求椭圆C的方程;
(2)求∠F1AF2的角平分线所在的直线l与椭圆C的另一个交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.

(1)a=1,p∧q为真,求实数x的取值范围;

(2)pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),

(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;
(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,AB,BC,BD两两垂直,BC=BD=2,点E是CD的中点,异面直线AD与BE所成角的余弦值为,则直线BE与平面ACD所成角的正弦值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列{an}满足:Sn为数列{an}的前n项和,且2,an , Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若cn=nan , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小型工厂安排甲、乙两种产品的生产,已知工厂生产甲、乙两种产品每吨所需要的原材料A,B,C的数量和一周内可用资源数量如下表所示:

原材料

甲(吨)

乙(吨)

资源数量(吨)

A

1

1

50

B

4

0

160

C

2

5

200

如果甲产品每吨的利润为300元,乙产品每吨的利润为200元,那么适当安排生产后,工厂每周可获得的最大利润为______元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(1)证明PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式ax2﹣bx﹣1>0的解集是 ,则不等式x2﹣bx﹣a≥0的解集是( )
A.{x|2<x<3}
B.{x|x≤2或x≥3}
C.
D.

查看答案和解析>>

同步练习册答案