精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e为自然对数的底数.
(1)若函数f(x)在点(1,f(1))处的切线方程是y=(e-1)x-1,求实数a及b的值;
(2)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(3)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

分析 (1)求出函数的导数,求得切线的斜率和切点,由切线的方程,解得a,b;
(2)求得g(x)及导数,对a讨论,当2a≤0即a≤0时,当ln(2a)≤0即0<a≤$\frac{1}{2}$时,当0<ln(2a)<1即$\frac{1}{2}$<a<$\frac{e}{2}$时,当ln(2a)≥1即a≥$\frac{e}{2}$时,求出单调区间可得最小值;
(3)求出导数,f(1)=0,即有e-a-b-1=0,可得b=e-a-1,结合(1),(2)运用函数零点存在定理,结合函数的单调性,即可得到所求范围.

解答 解:(1)由f(x)=ex-ax2-bx-1,得f′(x)=ex-2ax-b,
∴f(1)=e-a-b-1,f′(1)=e-2a-b,
∵函数f(x)在点(1,f(1))处的切线方程是y-(e-a-b-1)=(e-2a-b)(x-1),
由切线的方程y=(e-1)x-1,可得e-a-b-1=e-1-1,e-2a-b=e-1,
解得a=0,b=1;
(2)由f(x)=ex-ax2-bx-1得f′(x)=ex-2ax-b,
∴g(x)=f′(x)=ex-2ax-b,
∴g′(x)=ex-2a.
当2a≤0即a≤0时,ex-2a>0对一切x∈[0,1]恒成立,
∴g(x)在[0,1]内单调递增,
∴g(x)在[0,1]上的最小值是g(0)=1-b;
当2a>0即a>0时,令g′(x)=0,得x=ln(2a),
从而有①当ln(2a)≤0即0<a≤$\frac{1}{2}$时,列表如下:

x0(0,1)1
g′(x)+
g(x)1-be-2a-b
依表格知g(x)在[0,1]上的最小值是g(0)=1-b;  
②当0<ln(2a)<1即$\frac{1}{2}$<a<$\frac{e}{2}$时,列表如下:
x0(0,ln(2a))ln(2a)(ln(2a),1)1
g′(x)-0+
g(x)1-b2a-2aln(2a)-be-2a-b
依表格知g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;
③当ln(2a)≥1即a≥$\frac{e}{2}$时,列表如下:
x0(0,1)1
g′(x)+
g(x)1-be-2a-b
依表格知g(x)在[0,1]上的最小值是g(1)=e-2a-b.
综上所述:
当a≤$\frac{1}{2}$时,g(x)在[0,1]上的最小值是1-b;
当$\frac{1}{2}$<a<$\frac{e}{2}$时,g(x)在[0,1]上的最小值是2a-2aln(2a)-b;
当a≥$\frac{e}{2}$时,g(x)在[0,1]上的最小值是e-2a-b.
(3)f(x)=ex-ax2-bx-1,g(x)=f′(x)=ex-2ax-b,
由f(1)=0,即有e-a-b-1=0,可得b=e-a-1,
∴g(x)=ex-2ax-e+a+1,又f(0)=0.
若函数f(x)在区间(0,1)内有零点,
设x0为f(x)在区间(0,1)内的一个零点,
则由f(0)=f(x0)=0可知,
f(x)在区间(0,x0)内不可能单调递增,也不可能单调递减.
则g(x)在区间(0,x0)内不可能恒为正,也不可能恒为负.
故g(x)在区间(0,x0)内存在零点x1.同理g(x)在区间(x0,1)内存在零点x2
故函数f(x)在区间(0,1)内至少有三个单调区间,
g(x)在区间(0,1)内至少有两个零点.
由(2)知当a≤$\frac{1}{2}$或a≥$\frac{e}{2}$时,函数g(x)即f′(x)在区间[0,1]内单调,
不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.
若$\frac{1}{2}$<a<$\frac{e}{2}$,此时g(x)在区间(0,ln(2a))内单调递减,在区间(ln(2a),1)内单调递增.
因此x1∈(0,ln(2a)),x2∈(ln(2a),1),
又g(x)min=g(ln(2a))=2a-2aln(2a)-e+a+1=3a-2aln(2a)-e+1,
令h(x)=3x-2xln(2x)-e+1($\frac{1}{2}$<x<$\frac{e}{2}$),
则h′(x)=3-2ln(2x)-2x•$\frac{1}{2x}$•2=1-2ln(2x),
令h′(x)=0得x=$\frac{\sqrt{e}}{2}$,列表如下:
x($\frac{1}{2}$,$\frac{\sqrt{e}}{2}$)$\frac{\sqrt{e}}{2}$($\frac{\sqrt{e}}{2}$,$\frac{e}{2}$)
h′(x)+0-
h(x)$\sqrt{e}$-e+1
依表格知:当$\frac{1}{2}$<x<$\frac{e}{2}$时,h(x)min=$\sqrt{e}$-e+1<0,
∴g(x)min=3a-2aln(2a)-e+1<0恒成立,
于是,函数f(x)在区间(0,1)内至少有三个单调区间
?$\left\{\begin{array}{l}{\frac{1}{2}<a<\frac{e}{2}}\\{g(0)>0}\\{g(1)>0}\end{array}\right.$?$\left\{\begin{array}{l}{\frac{1}{2}<a<\frac{e}{2}}\\{2-e+a>0}\\{1-a>0}\end{array}\right.$?e-2<a<1.
综上所述:a的取值范围为(e-2,1).

点评 本题考查导数的运用:求切线的方程和单调区间、极值和最值,考查分类讨论的思想方法,考查函数方程的转化思想的运用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.为减轻学生的经济负担且满足学生的求知要求,某班级利用班费买了4本相同的数学辅导书、3本相同的英语辅导书,2本相同的物理辅导书作为班级图书供学生学习使用,现有8人去借阅图书,每人只能借阅1本,则不同的借阅方法有1260种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.己知抛物线x2=y上三点A,B,C,且A(-1,1),AB⊥BC,当点B移动时,点C的横坐标的取值范围是(  )
A.(-∞,3]∪[1,+∞)B.(-∞,-2)∪(2,+∞)C.[1,+∞)D.[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知圆C:(x-2)2+(y-2)2=18与直线l:x+y-2=0,求圆上点到直线l距离的取值范围.
(2)若圆C:(x-2)2+(y-2)2=r2上至少有三个不同的点到直线l:x+y-2=0的距离为2$\sqrt{2}$,求圆半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,椭圆的中心在坐标原点,长轴端点为A,B,右焦点为F,且$\overrightarrow{AF}$•$\overrightarrow{BF}$=1,|$\overrightarrow{OF}$|=1.
(1)求椭圆的标准方程;
(2)过椭圆的右焦点F作直线l1,l2,直线l1与椭圆分别交于点M,N,直线l2与椭圆分别交于点P,Q,且|$\overrightarrow{MP}$|2+|$\overrightarrow{NQ}$|2=|$\overrightarrow{NP}$|2+|$\overrightarrow{MQ}$|2
①证明:l1⊥l2; ②求四边形MPNQ的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数h(x)=x-(a+1)lnx-$\frac{a}{x}$,求函数h(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=$\frac{π}{3}$,OA⊥底面ABCD,OA=2,M为OA的中点.求点B到平面OCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F作圆C2:x2+y2=a2的切线,设切点为M,延长FM交双曲线C1于点N,若点M为线段FN的中点,则双曲线C1的离心率为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$+1D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$sin(α-\frac{π}{8})=\frac{3}{5},\frac{5π}{8}<α<\frac{9π}{8}$,
(1)求 $cos({α-\frac{π}{8}})$的值; 
 (2)求sin2α-cos2α的值.

查看答案和解析>>

同步练习册答案