分析 (1)由PD⊥平面ABCD即可得到BD⊥PD,再由BD⊥AD,根据线面垂直的判定定理即可得到BD⊥平面PAD,从而得出PA⊥BD;
(2)求出BD,利用VD-PBC=VP-BCD,即可求出三棱锥D-PBC的体积.
解答 (1)证明:∵PD⊥底面ABCD,BD⊆面ABCD,
∴PD⊥BD
又∠ADB=90°,∴BD⊥AD.
$\begin{array}{l}∵PD∩AD=D\end{array}$,
∴BD⊥平面PAD,
∴BD⊥PA.(5分)
(2)解:在Rt△ADB中,AD=1,AB=2,故$\begin{array}{l}BD=\sqrt{3}\end{array}$,
∴VD-PBC=VP-BCD=$\frac{1}{3}$×$(\frac{1}{2}×1×\sqrt{3})×1$=$\frac{\sqrt{3}}{6}$…..(10分)
点评 考查线面垂直的性质及判定定理,考查三棱锥D-PBC的体积,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 14斛 | B. | 22斛 | C. | 36斛 | D. | 66斛 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{4}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{3\sqrt{3}}}{4}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com