精英家教网 > 高中数学 > 题目详情
16.各项均为正数的数列{an}的前n项和为Sn,且3Sn=an•an+1,求a2+a4+…+a2n

分析 利用3Sn=an•an+1与3Sn+1=an+1•an+2作差可知3an+1=an+1•an+2-an•an+1,通过两边同时除以an+1可知数列{a2n}是以3为首项、3为公差的等差数列,进而计算可得结论.

解答 解:∵3Sn=an•an+1
∴3Sn+1=an+1•an+2
两式相减得:3an+1=an+1•an+2-an•an+1
∵an>0,
∴$\frac{3{a}_{n+1}}{{a}_{n+1}}$=$\frac{{a}_{n+1}•{a}_{n+2}-{a}_{n}•{a}_{n+1}}{{a}_{n+1}}$,
即3=an+2-an
又∵3a1=a1•a2,an>0,
∴a2=3,
∴数列{a2n}是以3为首项、3为公差的等差数列,
∴a2+a4+…+a2n=3n+3•$\frac{n(n-1)}{2}$=$\frac{3}{2}•n•(n+1)$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若关于x的方程sin2x+$\sqrt{3}$cos2x-k=0在区间[0,$\frac{π}{2}$]上有两个不同的实数解,则k的取值范围为[-$\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列事件中,是随机事件的是(  )
①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;
②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;
③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;
④异性电荷,相互吸引;
⑤某人购买体育彩票中一等奖.
A.②③④B.①③⑤C.①②③⑤D.②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“?x∈[0,+∞),x3+x≥0”的否定是(  )
A.?x∈(-∞,0),x3+x<0B.?x0∈[0,+∞),x${\;}_{0}^{3}$+x0<0
C.?x∈(-∞,0),x3+x≥0D.?x0∈[0,+∞),x${\;}_{0}^{3}$+x0≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的前n项和为Sn,且a1+a7=8,S1+S2=5.
(1)求数列{an}的通项公式;
(2)若$\sqrt{{b}_{n}}$是$\frac{1}{{a}_{n}}$与$\frac{1}{{a}_{n+1}}$的等比中项,Tn是数列{bn}的前n项和,求使得$\frac{{T}_{n}}{{T}_{k}}$≥$\frac{2k+1}{k}$•36-k恒成立的最小正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=a1x+a2x2+a3x3+…+anxn(x∈R,n∈N*),且对一切正整数n都有f(1)=n2成立
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Pn
(3)求证:f($\frac{1}{3}$)<1
(4)设数列{$\frac{1}{{{a}_{n}}^{2}}$}的前n项和为Rn,求证:Rn≤$\frac{3}{2}$-$\frac{1}{4n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(2,x),则“x=2”是“$\overrightarrow{a}$∥$\overrightarrow{b}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(θ)=2sin($\frac{π}{4}$+θ)[$\sqrt{3}$sin($\frac{π}{4}$+θ)+cos($\frac{π}{4}$+θ)],设角A为△ABC的内角,满足f(A)=$\sqrt{3}$+1.
(1)求角A的大小;
(2)若a=3,BC边上的中线长为3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x(x≥0)}\\{x+{x}^{2}(x<0)}\end{array}\right.$,对任意的x∈[0,1]恒有f(x-a)≤f(x)成立,则实数a=0、1或a≤-1.

查看答案和解析>>

同步练习册答案