精英家教网 > 高中数学 > 题目详情
17.设p:$\frac{2x-1}{x-1}≤0$,q:x2-(2a+1)x+a(a+1)<0,若p是q的充分不必要条件,则实数a的取值范围是(  )
A.$(0,\frac{1}{2})$B.$[0,\frac{1}{2})$C.$(0,\frac{1}{2}]$D.$[\frac{1}{2},1)$

分析 先求出命题p,q的等价条件,利用p是q的充分不必要条件,确定实数a的取值范围

解答 解:由 $\frac{2x-1}{x-1}≤0$,得$\left\{\begin{array}{l}{2x-1≤0}\\{x-1>0}\end{array}\right.$或$\left\{\begin{array}{l}{2x-1≥0}\\{x-1<0}\end{array}\right.$,
解得:$\frac{1}{2}$≤x<1,所以p:$\frac{1}{2}$≤x<1;
由x2-(2a+1)x+a(a+1)<0,
得:[x-(a+1)](x-a)<0,
即a<x<a+1,即q:a<x<a+1,
要使p是q的充分不必要条件,
则$\left\{\begin{array}{l}{a<\frac{1}{2}}\\{a+1≥1}\end{array}\right.$,解得0≤a<$\frac{1}{2}$,
所以a的取值范围是[0,$\frac{1}{2}$),
 故选:B.

点评 本题主要考查充分条件和必要条件的应用,利用分数不等式和一元二次不等式的解法求出对应的解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.任取x∈[0,π],则使$sinx>\frac{1}{2}$的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列结论:①函数y=$\sqrt{{x}^{2}}$和y=($\sqrt{x}$)2是同一函数;②函数f(x-1)的定义域为[1,2],则函数f(3x2)的定义域为[0,$\frac{\sqrt{3}}{3}$];③函数y=log2(x2+2x-3)的递增区间为(-1,+∞);其中正确的个数0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若方程lgx=3-x的根x0∈(n,n+1),n∈Z,则n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)是一个二次项系数为正的二次函数,f(x+3)=f(-1-x)对任意x∈R都成立,若向量$\overrightarrow{a}$=($\frac{1}{2}$,2sinx),$\overrightarrow{b}$=(2,sinx),$\overrightarrow{c}$=(2,1),$\overrightarrow{d}$=(1,cos2x),求f($\overrightarrow{a}$•$\overrightarrow{b}$)-f($\overrightarrow{c}$•$\overrightarrow{d}$)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=2sin(ωx+φ)(ω≠0,φ>0)是偶函数,则φ的最小值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=lg({x+\sqrt{{x^2}+1}})+x$,如果f(1+a)+f(1-a2)<0,则a的取值范围是{a|a<-1或a>2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若l、m、n是互不相同的空间直线,α,β不是重合的平面,则下列命题中为真命题的是(  )
A.若α∥β,l?α,n?β,则l∥nB.若α⊥β,l?α,则l⊥β
C.若l⊥α,l?β,则α⊥βD.若l⊥n,m⊥n,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足${a_{n+1}}=\frac{{2{a_n}+3}}{{{a_n}+4}}\;(n∈{N^*})$,设${b_n}=\frac{{{a_n}-λ}}{{{a_n}-μ}}\;\;(n∈{N^*},λ,μ$为均不等于2的且互不相等的常数),若数列{bn}为等比数列,则λ•μ的值为-3.

查看答案和解析>>

同步练习册答案