精英家教网 > 高中数学 > 题目详情

在长方体ABCD-A1B1C1D1中,AA1=c,AB=a,AD=b,且a>b.求AC1与BD所成的角的余弦.


解析:

解一:连AC,设AC∩BD=0,则O为AC中点,取C1C的中点F,连OF,则OF∥AC1且OF=AC1,所以∠FOB即为AC1与DB所成的角。在△FOB中,OB=,OF=,BE=,由余弦定理得

cosEAC1==

解二:取AC1中点O1,B1B中点G.在△C1O1G中,∠C1O1G即AC1与DB所成的角。

解三:.延长CD到E,使ED=DC.则ABDE为平行四边形.AE∥BD,所以∠EAC1即为AC1与BD所成的角.连EC1,在△AEC1

中,AE=,AC1=,C1E=由余弦定理,得

cos∠EAC1==<0

所以∠EAC1为钝角.

根据异面直线所成角的定义,AC1与BD所成的角的余弦为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、如图,在长方体ABCD-A1B1C1D1中,EF∥B1C1,用    平面BCFE把这个长方体分成了(1)、(2)两部分后,这两部分几何体的形状是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为A1B1、A1D1的中点.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求证:DF∥平面ACE.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离.如图,在长方体ABCD-A1B1C1D1中,点P是侧面BCC1B1内一动点,若点P到直线C1D1的距离是点P到平面ABCD的距离的
1
2
倍,则动点P的轨迹所在的曲线类型是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海) 如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体ABCDABCD′中,截下一个棱锥CADD′,求棱锥CADD′的体积与剩余部分的体积之比.

查看答案和解析>>

同步练习册答案