精英家教网 > 高中数学 > 题目详情

【题目】某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件。已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为多少元?

【答案】2300

【解析】试题分析:设甲种设备需要生产x天,乙种设备需要生产y天,该公司所需租赁费为z元,则,(2分)

甲、乙两种设备生产AB两类产品的情况为下表所示:

产品
设备

A类产品
(件)(≥50

B类产品
(件)(≥140

租赁费
(元)

甲设备

5

10

200

乙设备

6

20

300

4分)

则满足的关系为

作出不等式表示的平面区域,

对应的直线过两直线的交点(4,5)时,目标函数取得最低为2300元。(12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知常数,函数.

(1)讨论在区间上的单调性;

(2)若存在两个极值点,且,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax(a>0且a≠1)的图象经过点(2, ).
(1)比较f(2)与f(b2+2)的大小;
(2)求函数g(x)=a (x≥0)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下几个命题中真命题的序号为
①在空间中,m、n是两条不重合的直线,α、β是两个不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
②相关系数r的绝对值越接近于1,两个随机变量的线性相关性越强;
③用秦九昭算法求多项式f(x)=208+9x2+6x4+x6在x=﹣4时,v2的值为22;
④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于4的直线有且只有两条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是从成都某中学参加高三体育考试的学生中抽出的40名学生体育成绩(均为整数)的频率分布直方图,该直方图恰好缺少了成绩在区间[70,80)内的图形,根据图形的信息,回答下列问题:
(1)求成绩在区间[70,80)内的频率,并补全这个频率分布直方图,并估计这次考试的及格率(60分及以上为及格);
(2)从成绩在[80,100]内的学生中选出三人,记在90分以上(含90分)的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)设,当时,,求的最大值;

(3)已知,估计的近似值(精确到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线上有一个动点,过点作直线垂直于轴,动点上,且满足为坐标原点),记点的轨迹为.

(I)求曲线的方程;

(II)若直线是曲线的一条切线,当点到直线的距离最短时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的不等式 >1+ (其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,试确定k的取值范围;
(2)若k>1时,上述不等式的解集是x∈(3,+∞),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和Sn=an﹣1,则关于数列{an}的下列说法中,正确的个数有(
①一定是等比数列,但不可能是等差数列
②一定是等差数列,但不可能是等比数列
③可能是等比数列,也可能是等差数列
④可能既不是等差数列,又不是等比数列
⑤可能既是等差数列,又是等比数列.
A.4
B.3
C.2
D.1

查看答案和解析>>

同步练习册答案