精英家教网 > 高中数学 > 题目详情
18.一个圆锥的高是10,侧面展开图是半圆,则该圆锥的全面积为100π.

分析 设圆锥的底面半径为r,母线长为L,由侧面展开图为半圆,得到L=2r,由勾股定理得102+r2=L2,从而得到r=$\frac{10\sqrt{3}}{3}$,L=$\frac{20\sqrt{3}}{3}$,由此能注出该圆锥的全面积.

解答 解:设圆锥的底面半径为r,母线长为L,
因为侧面展开图为半圆,
所以:2πr=πL     即:L=2r,①
由勾股定理:102+r2=L2,②
由①②,解得:r=$\frac{10\sqrt{3}}{3}$,L=$\frac{20\sqrt{3}}{3}$,
圆锥的侧面积为:0.5×πL2=π×$\frac{200}{3}$=$\frac{200π}{3}$,
圆锥的底面积为:πr2=π×$\frac{100}{3}$=$\frac{100π}{3}$,
圆锥的全面积为:$\frac{200π}{3}+\frac{100π}{3}$=100π.
故答案为:100π.

点评 本题考查圆锥的全面积的求法,是中档题,解题时要认真审题,注意圆锥的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知sinα=$\frac{1}{3}$,α为第二象限角,则cosα的值为(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{2\sqrt{2}}{3}$D.-$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(sinx)=cos3x,则f(cos10°)的值为(  )
A.±$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$cos(\frac{π}{2}-α)=\frac{1}{3}$,$\frac{π}{2}<α<π$,则sin2α=(  )
A.$-\frac{{2\sqrt{2}}}{9}$B.$-\frac{{2\sqrt{2}}}{3}$C.$-\frac{{4\sqrt{2}}}{9}$D.$-\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果p是q的充分不必要条件,r是q的必要不充分条件;那么(  )
A.¬p?¬rB.¬p⇒¬rC.¬p?¬rD.p?r

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给定函数:①$y=\sqrt{x}$,②$y={log}_{\frac{1}{2}}(x+1)$,③y=|x2-2x|,④y=x+$\frac{1}{x}$,其中在区间(0,1)上单调递减的函数序号是(  )
A.②④B.②③C.①③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-4x-5<0},B={x|3<2x-1<7},设全集U=R,
求(1)A∪B.(2)A∩∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.用锤子以均匀的力敲击铁钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的$\frac{1}{n}$(n∈N*).已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的$\frac{3}{5}$,请从这个实事中提炼出一个不等式组是$\left\{\begin{array}{l}{\frac{4}{7}+\frac{4}{7n}<1}\\{\frac{4}{7}+\frac{4}{7n}+\frac{4}{7{n}^{2}}≥1}\\{n∈{N}^{*}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知O为原点,过双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)上的点P作两条渐近线的平行线,且与两渐近线的交点分别为A,B,平行四边形OBPA的面积为2,则此双曲线的渐近线方程为(  )
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

同步练习册答案