精英家教网 > 高中数学 > 题目详情
5.过抛物线y=$\frac{1}{4}$x2的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则△AOF的面积为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{47}{32}$C.$\sqrt{2}$D.2$\sqrt{2}$

分析 由题意画出图形,再由抛物线方程求出焦点坐标,得到A的纵坐标,进一步求出A点横坐标,代入三角形面积公式得答案.

解答 解:如图,

由抛物线方程y=$\frac{1}{4}$x2,可得F(0,1),
A的纵坐标为2,进一步可得${x}_{A}=2\sqrt{2}$.
∴${S}_{△AOF}=\frac{1}{2}|OF|•{x}_{A}=\frac{1}{2}×1×2\sqrt{2}=\sqrt{2}$.
故选:C.

点评 本题考查抛物线的定义,考查了抛物线的几何性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图,甲、乙两组数据的中位数的和是(  )
A.56B.57C.58D.59

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程ρ=4cosθ,曲线C2的参数方程为$\left\{\begin{array}{l}x=m+tcosα\\ y=tsinα\end{array}\right.(t$为参数,0≤α<π)射线$θ=φ+\frac{π}{4},θ=φ-\frac{π}{4}$与曲线C1交于极点O为的三点A、B、C
(1)若|OB|+|OC|=λ|OA|,求λ的值;
(2)当$φ=\frac{π}{12}$时,B、C两点在曲线C2上,求m与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在凸四边形ABCD中,对角线BD不平分对角中的任意一个.点P在四边形ABCD内部,并且满足∠PBC=∠DBA和∠PDC=∠BDA.若A,B,C,D四点共圆,证明:AP=CP.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.i为虚数单位,复数$\frac{i}{i+1}$在复平面内对应的点到原点的距离为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若$\underset{lim}{x→∞}(\frac{{x}^{2}+1}{x+1}-ax-b)=0$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.地球的北纬45°圈上有A,B两点,它们分别在东经70°和东经160°的经线上,则A,B两点的球面距离与其在此北纬45°圈上劣弧长的比值为$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AB⊥AC,AB=AC=1,AA1=2,E、F、G分别是棱BB1、B1C1、CC1的中点.
(1)求证:AG∥平面A1EF;
(2)求直线AG与平面BCC1B1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是定义在R上的奇函数,x≥0时,f(x)=-x2+2x.
(1)求f(x)在R上的表达式;
(2)令g(x)=f(x),问是否存在大于零的实数a、b,使得当x∈[a,b]时,函数g(x)值域为$[{\frac{1}{b},\frac{1}{a}}]$,若存在求出a、b的值,若不存在请说明理由.

查看答案和解析>>

同步练习册答案