精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(1)=1,且对任意x∈R都有f′(x)
1
2
,则不等式f(x2)>
x2+1
2
的解集为(  )
分析:所求解的不等式是抽象不等式,是与函数有关的不等式,函数的单调性和不等关系最密切.由f′(x)
1
2
,构造单调递减函数h(x)=f(x)-
1
2
x
,利用其单减性求解.
解答:解:∵f′(x)
1
2

∴f′(x)-
1
2
<0,
设h(x)=f(x)-
1
2
x
,则h′(x)=f′(x)-
1
2
<0,
∴h(x)是R上的减函数,且h(1)=f(1)-
1
2
=1-
1
2
=
1
2

不等式f(x2)>
x2+1
2

即为f(x2-
1
2
x2
1
2

即h(x2)>h(1),
得x2<1,解得-1<x<1,
∴原不等式的解集为(-1,1).
故选:D.
点评:本题考查抽象不等式求解,关键是利用函数的单调性,根据已知条件和所要解的不等式,找到合适的函数作载体是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案