精英家教网 > 高中数学 > 题目详情
11.已知曲线C1:$\left\{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}\right.$(α为参数)与曲线C2:ρ=4sinθ
(1)写出曲线C1的普通方程和曲线C2的直角坐标方程;
(2)求曲线C1和C2公共弦的长度.

分析 (1)利用sin2θ+cos2θ=1消参数得到C1的普通方程,对ρ=4sinθ两边同乘以ρ即可得到曲线C2的普通方程;
(2)曲线C1和C2公共弦所在额直线为2x-4y+3=0,求出圆心距,即可求出公共弦长.

解答 解:(1)曲线C1的普通方程围为(x-1)2+y2=4,
曲线C2的直角坐标方程x2+y2-4y=0,
(2)曲线C1和C2公共弦所在额直线为2x-4y+3=0,
且点C1(1,0)到直线2x-4y+3=0的距离为$\frac{2+3}{\sqrt{{2}^{2}+{4}^{2}}}$=$\frac{\sqrt{5}}{2}$,
所以公共弦的长度为2$\sqrt{4-\frac{5}{4}}$=$\sqrt{11}$.

点评 本题考查了参数方程,极坐标方程与普通方程的互化,圆与圆的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在△ABC中,
①A<B?sinA<sinB;
②若a,b,c为△ABC的三边且a=$\sqrt{3}$,B=2A,则b的取值范围是($\sqrt{3},2\sqrt{3}$);
③若O为△ABC所在平面内异于A、B、C的一定点,动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ(${\frac{{\overrightarrow{AB}}}{{|\overrightarrow{AB}|sinB}}+\frac{{\overrightarrow{AC}}}{{|\overrightarrow{AC}|sinC}}}$)(λ∈R),则动点P必过△ABC的内心;
④△ABC的三边构成首项为正整数,公差为1的等差数列,且最大角是最小角的两倍,则最小角的余弦值为$\frac{3}{4}$.
其中所有正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},则图中阴影部分所表示的集合为(  )
A.{3}B.{2,4}C.{2,3,4}D.{3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,正方形BCDE的边长为a,已知AB=$\sqrt{3}$BC,将直角△ABE沿BE边折起,A点在平面BCDE上的射影为D点,则对翻折后的几何体中有如下描述:
①AB与DE所成角的正切值是$\sqrt{2}$;
②三棱锥B-ACE的体积是$\frac{1}{6}$a3
③直线BA与平面ADE所成角的正弦值为$\frac{1}{3}$.
④平面EAB⊥平面ADE.
其中错误叙述的是③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的体积为(  )
A.3B.1C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=3+x+2$\sqrt{x+1}$的最小值是(  )
A.4+2$\sqrt{2}$B.1C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若cos100°=m,则tan80°=-$\frac{\sqrt{1-{m}^{2}}}{m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆的中心点在原点,离心率e=$\frac{1}{2}$,且它的一个焦点与抛物线y2=-4x的焦点重合,则此椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sinx+$\frac{2}{sinx}$,试判断f(x)在(0,π)内的增减性,且证明你的结论.

查看答案和解析>>

同步练习册答案