精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分别在线段上,B1E=3EC1,AC=BC=CC1=4.

(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF//平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.
(1)证明过程详见解析;(2)证明过程详见解析.

试题分析:本题主要以三棱柱为几何背景考查线线垂直,线面垂直、线面平行、面面平行等数学知识,考查学生的逻辑推理能力和空间想象能力,考查学生的数形结合思想.第一问,由于AA1⊥面ABC,所以利用线面垂直的性质得垂直面内的线BC,而,利用线面垂直的判定得,所以BC垂直于面内的线;第二问,法一:先找到F点的位置,再证明,作出辅助线,因为,所以得到,而,即,所以,所以四边形AFEG为平行四边形,所以,所以利用线面平行的判定得平面;法二:作出辅助线,利用线面平行的判定,可以推断出平面平面,利用面面平行的判定,得面平面,所以得平面.
试题解析:(1)∵AA1⊥面ABC,BC?面ABC,
∴BC⊥AA1.(1分)
又∵BC⊥AC,AA1,AC?面AA1C1C,AA1∩AC=A,∴BC⊥面AA1C1C,(3分)
又AC1?面AA1C1C,∴BC⊥AC1.(4分)

(2)(法一)当AF=3FC时,FE∥平面A1ABB1.(7分)
理由如下:在平面A1B1C1内过E作EG∥A1C1交A1B1于G,连结AG.
∵B1E=3EC1,∴
又AF∥A1C1
∴AF∥EG且AF=EG,
∴四边形AFEG为平行四边形,∴EF∥AG,(10分)
又EF?面A1ABB1,AG?面A1ABB1,∴EF∥平面A1ABB1.(12分)
(法二)当AF=3FC时,FE∥平面A1ABB1.(9分)
理由如下:在平面BCC1B1内过E作EG∥BB1交BC于G,连结FG.

∵EG∥BB1,EG?面A1ABB1,BB1?面A1ABB1
∴EG∥平面A1ABB1.∵B1E=3EC1,∴BG=3GC,
∴FG∥AB,又AB?面A1ABB1,FG?面A1ABB1
∴FG∥平面A1ABB1.
又EG?面EFG,FG?面EFG,EG∩FG=G,
∴平面EFG∥平面A1ABB1.(11分)
∵EF?面EFG,∴EF∥平面A1ABB1.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个不重合的平面, 是直线,给出下列四个命题:①若;②若;③若上有两点到的距离相等,则;④若,则其中正确命题的序号 (    )
A.②④B.①④C.②③D.①②

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,用符号语言可表达为(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,b,c是空间三条不同的直线,是空间两个不同的平面,则下列命题不成立的是(    )
A.当时,若,则
B.当,且内的射影时,若b⊥c,则⊥b
C.当时,若b⊥,则
D.当时,若c∥,则b∥c

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

命题:“若空间两条直线a,b分别垂直平面α,则a∥b”,学生小夏这样证明:
设a,b与平面α分别相交于A,B,连接AB,
∵a⊥α,b⊥α,AB?α,①
∴a⊥AB,b⊥AB,②
∴a∥b.③
这里的证明有两个推理,即:
①⇒②和②⇒③,老师认为小夏的推理证明不正确,这两个推理中不正确的是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

a、b、c为三条不重合的直线,α、β、γ为三个不重合平面,现给出六个命题:
 a∥b;② a∥b;③ α∥β;
 α∥β;⑤ α∥a;⑥ a∥α.
其中正确的命题是________.(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”)

查看答案和解析>>

同步练习册答案