【题目】如图,四棱锥中,底面是边长为的菱形,,,为中点.
(1)求证:平面平面;
(2)若,,的交点记为,求证平面;
(3)在(2)的条件下求三棱锥的体积.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】试题分析:(1)根据等腰三角形的性质可得,根据菱形的性质可得,由线面垂直的判定定理可得面,根据面面垂直的判定定理可得结果;(2)由,为中点,可得,由(1)知,利用线面垂直的判定定理可得结论;(3)先证明面,则,利用棱锥的体积公式可得结果.
试题解析:(1)设,连结,
∴,为中点,
∴,
又∵底面为菱形,
∴,
∵,
∴面,
又∵面,
∴面面.
(2)∵,为中点,
∴,
又∵,,
∴面.
(3)过作于,
∴,
又∵面,
面,
∴
.
【方法点晴】本题主要考线面垂直的判定定理、面面垂直的判定定理以及利用等积变换求棱锥体积,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=,若数列{an}(n∈N*)满足:a1=1,an+1=f(an).
(1)证明数列{}为等差数列,并求数列{an}的通项公式.
(2)设数列{cn}满足:cn=,求数列{cn}的前n项的和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin2( +x)﹣ cos2x,
(1)求f(x)的最小正周期及单调递减区间;
(2)当x 时,求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列说法:
①y=sinx+cosx在区间(﹣ , )内单调递增;
②存在实数α,使sinαcosα= ;
③y=sin( +2x)是奇函数;
④x= 是函数y=cos(2x+ )的一条对称轴方程.
其中正确说法的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(sinx,cosx), =(sin(x﹣ ),sinx),函数f(x)=2 ,g(x)=f( ).
(1)求f(x)在[ ,π]上的最值,并求出相应的x的值;
(2)计算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,讨论g(x)在[t,t+2]上零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣x3+ax2+bx+c图象上的点P(1,m)处的切线方程为y=﹣3x+1
(1)若函数f(x)在x=﹣2时有极值,求f(x)的表达式.
(2)若函数f(x)在区间[﹣2,0]上单调递增,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆的半焦距为c,且过点,原点O到经过两点(c,0),(0,b)的直线的距离为.
(1)求椭圆E的方程;
(2)A为椭圆E上异于顶点的一点,点P满足,过点P的直线交椭圆E于B,C两点,且,若直线OA,OB的斜率之积为,求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com