【题目】已知函数().
(1)若,证明:当时,;
(2)若对于任意的且,都有,求的取值集合.
【答案】(1)证明见解析;(2).
【解析】
(1)将问题转化为当时,,利用导数得到的单调性和最值,进行证明;(2)通过函数端值得到,将问题等价于当时,,对进行分类,通过导数得到的单调性,从而得到符合要求的.
(1)当时,,
要证当时,,
即证当时,
令,
当时,,在内单调递减
当时,,在内单调递增,
故.证毕.
(2)先分析端值,当时,,,
要使,需有,即;
当时,,,
要使,需有;
故必须有.
由知其分子恒正,
令,
于是问题等价于当时,;
当时,.
注意到.
①当时,
此时当时,,在单调递减,
于是,这不符合题意;
②当时,,得,.
(i)当时,,,在单调递增,
结合可知符合题意;
(ii)当时,,此时当时,
于是在在单调递减,
故在内,这不符合题意;
(iii)当时,,此时当时,
于是在在单调递减,
故在内,这不符合题意;
综上:符合题意的取值集合为.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD的底面ABCD是菱形,AC与BD交于点O,底面ABCD,点M为PC中点,,,.
(1)求异面直线AP与BM所成角的余弦值;
(2)求平面ABM与平面PAC所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学老师给出一个函数,甲、乙、丙、丁四个同学各说出了这个函数的一条性质:甲:在 上函数单调递减;乙:在上函数单调递增;丙:在定义域R上函数的图象关于直线对称;丁:不是函数的最小值.老师说:你们四个同学中恰好有三个人说的正确.那么,你认为____说的是错误的.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车.每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自于同一年级的乘坐方式共有_______种(有数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
(1)设表示在这块地上种植1季此作物的利润,求的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线C1,C2的极坐标方程分别为ρ=-2cosθ,ρcos=1.
(1)求曲线C1和C2的公共点的个数;
(2)过极点作动直线与曲线C2相交于点Q,在OQ上取一点P,使|OP|·|OQ|=2,求点P的轨迹,并指出轨迹是什么图形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com