精英家教网 > 高中数学 > 题目详情

在△ABC中,已知,其中分别为的内角所对的边.求:
(Ⅰ)求角的大小;
(Ⅱ)求满足不等式的角的取值范围.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)利用正弦定理将角转化为边,然后借助余弦定理求角C;(Ⅱ)借助内角和定理和第一问的结论将不等式中得角B用A表示,进而展开借助辅助角公式进行化简合并为“三个一”的结构形式,探求A的范围.
试题解析:(Ⅰ)由及正弦定理得
∴(+)(-)=(-),即            4分

,∴               6分
(Ⅱ) ∵,∴,        7分
,∴,       9分
.                     12分
考点:1。正余弦定理;2.三角化简。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=-sin(2x-).
(I)求函数f(x)的最大值和最小值;
(Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,c=3,f()=,若,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为,且.
(Ⅰ)求函数的最大值;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数的最小正周期为.

(Ⅰ)试求的值;
(Ⅱ)在图中作出函数在区间上的图象,并根据图象写出其在区间上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数的最大值为
(Ⅰ)求
(Ⅱ)将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.(1)求函数的最小正周期和最小值;(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量向量与向量的夹角为,且.
(1)求向量 ;  
(2)若向量共线,向量,其中的内角,且依次成等差数列,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(I)求函数上的最大值与最小值;
(II)若实数使得对任意恒成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)利用“五点法”画出该函数在长度为一个周期上的简图;
列表;


 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
作图:

(2)说明该函数的图像可由的图像经过怎样的变换得到.

查看答案和解析>>

同步练习册答案