精英家教网 > 高中数学 > 题目详情

【题目】如图,圆F和抛物线,过F的直线与抛物线和圆依次交于ABCD四点,求的值是( )

A.1B.2C.3D.无法确定

【答案】A

【解析】

可分两类讨论,若直线的斜率不存在,则直线方程为x=1,代入抛物线方程和圆的方程,可直接得到ABCD四个点的坐标,从而|AB||CD|=1.若直线的斜率存在,设为直线方程为y=kx-1),不妨设Ax1y1),Dx2y2),过A、D分别作抛物线准线的垂线,由抛物线的定义,|AF|=x1+1|DF|=x2+1,把直线方程与抛物线方程联立,消去y可得k2x2-2k2+4x+k2=0,利用韦达定理及|AB|=|AF|-|BF|=x1|CD|=|DF|-|CF|=x2,可求|AB||CD|的值.

解:若直线的斜率不存在,则直线方程为x=1,代入抛物线方程和圆的方程,可直接得到ABCD四个点的坐标为(12)(11)(1-1)(1-2),所以|AB|=1|CD|=1,从而|AB||CD|=1.若直线的斜率存在,设为k,因为直线过抛物线的焦点(10),则直线方程为y=kx-1),不妨设Ax1y1),Dx2y2),过A、D分别作抛物线准线的垂线,由抛物线的定义,|AF|=x1+1|DF|=x2+1,把直线方程与抛物线方程联立,消去y可得k2x2-2k2+4x+k2=0,由韦达定理有 x1x2=1而抛物线的焦点F同时是已知圆的圆心,所以|BF|=|CF|=R=1
从而有|AB|=|AF|-|BF|=x1|CD|=|DF|-|CF|=x2
所以|AB||CD|=x1x2=1
故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次田径比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示。

若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取5人,则其中成绩在区间上的运动员人数为

A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴椭圆”,若椭圆右焦点坐标为,且过点.

1)求椭圆的“伴椭圆”方程;

2)在椭圆的“伴椭圆”上取一点,过该点作椭圆的两条切线,证明:两线垂直;

3)在双曲线上找一点作椭圆的两条切线,分别交于切点使得,求满足条件的所有点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形中,已知的面积是的面积的3倍,若存在正实数使得成立,则的最小值为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列各项均非零,且存在常数,对任意恒成立,则成这样的数列为“类等比数列”,例如等比数列一定为类等比数列,则:

1)各项均非零的等差数列是否可能为“类等比数列”?若可能,请举例;若不能,说明理由;

2)已知数列为“类等比数列”,且,是否存在常数,使得恒成立?

3)已知数列为“类等比数列”,且,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游胜地欲开发一座景观山,从山的侧面进行勘测,迎面山坡线由同一平面的两段抛物线组成,其中所在的抛物线以为顶点、开口向下,所在的抛物线以为顶点、开口向上,以过山脚(点)的水平线为轴,过山顶(点)的铅垂线为轴建立平面直角坐标系如图(单位:百米).已知所在抛物线的解析式所在抛物线的解析式为

(1)求值,并写出山坡线的函数解析式;

(2)在山坡上的700米高度(点)处恰好有一小块平地,可以用来建造索道站,索道的起点选择在山脚水平线上的点处,(米),假设索道可近似地看成一段以为顶点、开口向上的抛物线当索道在上方时,索道的悬空高度有最大值,试求索道的最大悬空高度;

(3)为了便于旅游观景,拟从山顶开始、沿迎面山坡往山下铺设观景台阶,台阶每级的高度为20厘米,长度因坡度的大小而定,但不得少于20厘米,每级台阶的两端点在坡面上(见图).试求出前三级台阶的长度(精确到厘米),并判断这种台阶能否一直铺到山脚,简述理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中,,四边形为矩形,平面平面.

1)求证:平面

2)点在线段上运动,设平面与平面所成二面角的平面角为),试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合是实数集的子集,如果正实数满足:对任意都存在使得则称为集合的一个“跨度”,已知三个命题:

(1)若为集合的“跨度”,则也是集合的“跨度”;

(2)集合的“跨度”的最大值是4;

(3)是集合的“跨度”.

这三个命题中正确的个数是()

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,底面是直角三角形,为侧棱的中点.

(1)求异面直线所成角的余弦值;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案