解:(I)证明:(I) 因为△ABC是正三角形,M是AC中点,
所以BM⊥AC,即BD⊥AC…(1分)
又因为PA⊥平面ABCD,BD?平面ABCD,PA⊥BD…(2分)
又PA∩AC=A,所以BD⊥平面PAC…(4分)
又PC?平面PAC,所以BD⊥PC…(5分)
(Ⅱ)在正三角形ABC中,BM=
…(6分)
在△ACD,因为M为AC中点,DM⊥AC,所以AD=CD
∠CAD=30°,所以,DM=
,所以BM:MD=3:1…(8分)
所以BN:NP=BM:MD,所以MN∥PD…(9分)
又MN?平面PDC,PD?平面PDC,所 以MN∥平面PDC…(11分)
(Ⅲ)假设直线l∥CD,因为l?平面PAB,CD?平面PAB,
所以CD∥平面PAB…(12分)
又CD?平面ABCD,平面PAB∩平面ABCD=AB,所以CD∥AB…(13分)
这与CD与AB不平行,矛盾
所以直线l与直线CD不平行…(14分)
分析:(Ⅰ)通过证明BD⊥平面PAC,然后证明BD⊥PC;
(Ⅱ)通过证明线段成比例证明MN∥PD,利用直线 平面平行的判定定理证明MN∥平面PDC;
(Ⅲ)利用反证法证明直线l∥CD,推出CD∥AB与CD与AB不平行矛盾从而说明直线l与直线CD不平行.
点评:本题考查在与平面垂直与平行的判定定理的应用,反证法的应用,考查空间想象能力与逻辑推理能力.