精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:

尺寸







甲零件频数

2

3

20

20

4

1

乙零件频数

3

5

17

13

8

4

)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1.若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;

)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为零件优等与否和所用机床有关,并说明理由.

参考公式:.

参考数据:


025

015

010

005

0025

0.010


1323

2072

2706

3841

5024

6.635

【答案】1)2)约有的把握认为零件优等与否和所用机床有关”.

【解析】

试题分析:解:()设甲机床生产一件零件获得的利润为元,它的分布列为


3

1



0.8

0.14

0.06

则有=3×0.8+1×0.14+-1×0.06=2.48(元).

所以,甲机床生产一件零件的利润的数学期望为2.48.

)由表中数据可知:甲机床优等品40个,非优等品10个;乙机床优等品30个,非优等品20.

制作2×2列联表如下:


甲机床

乙机床

合计

优等品

40

30

70

非优等品

10

20

30

合计

50

50

100

计算=.

考察参考数据并注意到,可知:对于这两台机床生产的零件,在排除其它因素影响的情况下,根据样本估计总体的思想,约有95%的把握认为零件优等与否和所用机床有关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且曲线处有相同的切线.

(Ⅰ)求实数的值;

(Ⅱ)求证:上恒成立;

(Ⅲ)当时,求方程在区间内实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数).

1)分别求出曲线和直线的直角坐标方程;

2)若点在曲线上,且到直线的距离为1,求满足这样条件的点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax2+bx+ca0),且f1

1)求证:函数fx)有两个不同的零点;

2)设x1x2是函数fx)的两个不同的零点,求|x1x2|的取值范围;

3)求证:函数fx)在区间(02)内至少有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的对称轴方程;

2)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若 分别是三个内角 的对边, ,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l1kx-y+4=0与直线l2x+ky-3=0相交于点P,则当实数k变化时,点P到直线4x-3y+10=0的距离的最大值为(  )

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实常数,函数.

(1)讨论函数的单调性;

(2)若函数有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左、右焦点分别为,且与抛物线的焦点重合.

(1)求椭圆的标准方程;

(2)若过的直线交椭圆于两点,过的直线交椭圆于两点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1234.

1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;

2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率

查看答案和解析>>

同步练习册答案