精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C)的一个焦点与抛物线的焦点相同,为椭圆的左、右焦点,M为椭圆上任意一点,若的面积最大值为1.

1)求椭圆C的方程;

2)设不过原点的直线l与椭圆C交于不同的两点AB,若直线l的斜率是直线斜率的等比中项,求面积的取值范围.

【答案】12

【解析】

1)由抛物线焦点坐标及的面积最大值可求出,即可求出椭圆的方程;

2)联立直线与椭圆方程,设出交点坐标,再利用斜率公式可得,再结合点到直线的距离公式求解即可.

解:(1)由抛物线的方程为得其焦点坐标为

所以可得椭圆中.

M点位于椭圆的短轴顶点时,的面积最大,

此时,所以.

又由

所以椭圆C的方程为

2)由消去y

,即*.

,则.

∵直线l的斜率是直线斜率的等比中项,

,代入(*)式得.

设点O到直线的距离为d,则

面积的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直角坐标系中,圆的方程为为圆上三个定点,某同学从点开始,用掷骰子的方法移动棋子.规定:①每掷一次骰子,把一枚棋子从一个定点沿圆弧移动到相邻下一个定点;②棋子移动的方向由掷骰子决定,若掷出骰子的点数为偶数,则按图中箭头方向移动;若掷出骰子的点数为奇数,则按图中箭头相反的方向移动.设掷骰子次时,棋子移动到处的概率分别为.例如:掷骰子一次时,棋子移动到处的概率分别为

1)分别掷骰子二次,三次时,求棋子分别移动到处的概率;

2)掷骰子次时,若以轴非负半轴为始边,以射线为终边的角的余弦值记为随机变量,求的分布列和数学期望;

3)记,其中.证明:数列是等比数列,并求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.

1)求曲线的参数方程;

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xy中,曲线C的参数方程为为参数),在以为极点,轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线C的极坐标方程;

(2)设直线与曲线C相交于A,B两点,P为曲C上的一动点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车的投放,方便了市民短途出行,被誉为中国新四大发明之一.某市为研究单车用户与年龄的相关程度,随机调查了100位成人市民,统计数据如下:

不小于40

小于40

合计

单车用户

12

y

m

非单车用户

x

32

70

合计

n

50

100

1)求出列联表中字母xymn的值;

2)①从此样本中,对单车用户按年龄采取分层抽样的方法抽出5人进行深入调研,其中不小于40岁的人应抽多少人?

②从独立性检验角度分析,能否有以上的把握认为该市成人市民是否为单车用户与年龄是否小于40岁有关.

下面临界值表供参考:

P

0.15

0.10

0.05

0.25

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100.为继承和发扬五四精神在青年节到来之际,学校组织五四运动100周年知识竞赛,竞赛的一个环节由10道题目组成,其中6A类题、4B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.

1)求甲同学至少抽到2B类题的概率;

2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2A类题和1B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,,侧面是边长为2的正方形,点分别是线段的中点,且.

1)证明:平面平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝数学家何承天发明的调日法是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数的不足近似值和过剩近似值分别为,则的更为精确的不足近似值或过剩近似值.我们知道,若令,则第一次用“调日法”后得的更为精确的过剩近似值,即,若每次都取最简分数,那么第四次用“调日法”后可得的近似分数为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,.已知分别是的中点.沿折起,使的位置且二面角的大小是60°,连接,如图:

1)证明:平面平面

2)求平面与平面所成二面角的大小.

查看答案和解析>>

同步练习册答案