精英家教网 > 高中数学 > 题目详情
已知点(1,
1
2
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{
1
bnbn+1
}前n项和为Tn,问满足Tn
999
2010
的最小正整数n是多少?
(Ⅰ)∵f(1)=a=
1
2

∴f(x)=(
1
2
x
∴a1=f(1)-c=
1
2
-c,
∴a2=[f(2)-c]-[f(1)-c]=-
1
4
,a3=[f(3)-c]-[f(2)-c]=-
1
8

又数列{an}成等比数列,
a1=
a22
a3
=-
1
2

∵a1=
1
2
-c
∴-
1
2
=
1
2
-c,∴c=1
又公比q=
a2
a1
=
1
2

所以an=-
1
2
1
2
n-1=-(
1
2
n,n∈N;
∵Sn-Sn-1=(
Sn-Sn-1
)(
Sn
+
Sn-1
)
=
Sn
+
Sn-1
(n≥2)
又bn>0,
Sn
>0,∴
Sn
-
Sn-1
=1;
∴数列{
Sn
}构成一个首项为1公差为1的等差数列,
Sn
=1+(n-1)×1=n,Sn=n2
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1;
又b1=c=1适合上式,∴bn=2n-1(n∈N);
(Ⅱ)Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
1
1×2
+
1
3×5
+
1
5×7
+…+
1
(2n-1)×(2n+1)

=
1
2
(1-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)+…+
1
2
(
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)=
n
2n+1

Tn=
n
2n+1
999
2010
,得n>
333
4

满足Tn
999
2010
的最小正整数为84.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点(1,
1
2
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{
1
bnbn+1
}前n项和为Tn,问满足Tn
999
2010
的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(1,
1
3
)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).记数列{
1
bnbn+1
}前n项和为Tn
(1)求数列{an}和{bn}的通项公式;
(2)若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
2
>Tn恒成立,求实数t的取值范围
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

A组:直角坐标系xoy中,已知中心在原点,离心率为
1
2
的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.
(1)求椭圆E的方程;
(2)设P是椭圆E上一点,过P作两条斜率之积为
1
2
的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.
B组:如图,在平面直角坐标系xoy中,椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1(-c,0),F2(c,0).已知点(1,e)和(e,
3
2
)
都在椭圆上,其中e为椭圆离心率.
(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P,若AF1-BF2=
6
2
,求直线AF1的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(4,2)是直线l被椭圆
x2
36
+
y2
9
=1
所截得的线段的中点,则直线l的斜率是
-
1
2
-
1
2

查看答案和解析>>

同步练习册答案