精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形是边长为2的菱形,都垂直于平面,且.

1)证明:平面

2)若,求三棱锥的体积.

【答案】1)见解析;(2

【解析】

1)法一由,利用线面平行的判定定理,得到,同理,再由面面平行的判定定理得到面即可.

2)法一:连接交于点,利用线面垂直的判定定理易得,∴,又,四边形为矩形,利用等体积法求解.

1)法一∵

平面平面,∴

,∴

,∴面

,∴.

法二:取中点,连接

平面平面

,∴四边形为平行四边形,

,∴四边形为平行四边形,

.

平面平面,∴,∴四点共面.

.

,∴.

2)法一:连接交于点

,∴.

.

在等边中,

,又.

∴四边形为矩形,

.

.

法二:∵,∴

.

中点,连接

,∴

在等边中,

,∴

到面的距离即为.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】自湖北武汉爆发新型冠状病毒肺炎疫情以来,各地医疗物资缺乏,各生产企业纷纷加班加点生产,某企业准备购买三台口罩生产设备,型号分别为ABC,已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元;也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应同时购买的易耗品的件数,该单位调查了这三种型号的设备各60台,调查每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.

每台设备一个月中使用的易耗品的件数

6

7

8

频数

型号A

30

30

0

型号B

20

30

10

型号C

0

45

15

将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.

1)求该单位一个月中ABC三台设备使用的易耗品总数超过21件(不包括21件)的概率;

2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知xyz均为正数.

1)若xy1,证明:|x+z||y+z|4xyz

2)若,求2xy2yz2xz的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司2013年至2019年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关):

年份

2013

2014

2015

2016

2017

2018

2019

年份代号

1

2

3

4

5

6

7

年利润 (单位:亿元)

(Ⅰ)求关于的线性回归方程,并预测该公司2020(年份代号记为)的年利润;

(Ⅱ)当统计表中某年年利润的实际值大于由中线性回归方程计算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.中预测的该公司2020年的年利润视作该年利润的实际值,现从2015年至2020年这年中随机抽取年,求恰有年为级利润年的概率.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

)若,求函数的单调区间;

)设.上恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点、点及抛物线.

1)若直线过点及抛物线上一点,当最大时求直线的方程;

2轴上是否存在点,使得过点的任一条直线与抛物线交于点,且点到直线的距离相等?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ+)=1

1)求直线l的直角坐标方程和曲线C的普通方程;

2)已知点M 20),若直线l与曲线C相交于PQ两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点按照逆时针方向排列,点的极坐标为.

(Ⅰ)求点的直角坐标;

(Ⅱ)设上任意一点,求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)写出直线的极坐标方程与曲线的直角坐标方程;

2)已知与直线平行的直线过点,且与曲线交于两点,试求

查看答案和解析>>

同步练习册答案