【题目】已知椭圆,抛物线的焦点均在轴上, 的中心和的顶点均为原点,从每条曲线上各取两个点,其坐标分别是, , , .
(1)求, 的标准方程;
(2)是否存在直线满足条件:①过的焦点;②与交于不同的两点且满足?若存在,求出直线方程;若不存在,请说明理由.
【答案】(Ⅰ)的标准方程为 ; 的标准方程为 ;(Ⅱ)见解析.
【解析】试题分析:(1)设抛物线,则有,据此验证四个点即可求解(2)首先假设存在直线满足条件,利用向量垂直时求出直线参数k即得结论
试题解析:
(Ⅰ)设抛物线,则有,
据此验证四个点知, 在抛物线上,
易得,抛物线的标准方程为
设椭圆,把点, 代入可得
所以椭圆的标准方程为
(Ⅱ)由椭圆的对称性可设的焦点为F(1,0),
当直线l的斜率不存在时,直线l的方程为
直线l交椭圆于点
,不满足题意
当直线l的斜率存在时,设直线l的方程为, 并设
由,消去y得, ,
于是
①,
由得 ②
将①代入②式,得,解得
所以存在直线l满足条件,且l的方程为或
科目:高中数学 来源: 题型:
【题目】已知函数 ,其中a∈R,若对任意的非零的实数x1 , 存在唯一的非零的实数x2(x2≠x1),使得f(x2)=f(x1)成立,则k的最小值为( )
A.
B.5
C.6
D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中秋节即将到来,为了做好中秋节商场促销活动,某商场打算将进行促销活动的礼品盒重新设计.方案如下:将一块边长为10的正方形纸片剪去四个全等的等腰三角形, , , 再将剩下的阴影部分折成一个四棱锥形状的包装盒,其中重合于点, 与重合, 与重合, 与重合, 与重合(如图所示).
(1)求证:平面平面;
(2)已知,过作交于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2a≤x<a+3},B={x|x<﹣1或x>5}.
(1)若a=﹣1,求A∪B,(RA)∩B.
(2)若A∩B=,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)判断并证明函数f(x)的奇偶性
(2)判断并证明当x∈(﹣1,1)时函数f(x)的单调性;
(3)在(2)成立的条件下,解不等式f(2x﹣1)+f(x)<0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com