精英家教网 > 高中数学 > 题目详情
13.设函数f(x)的导数为f'(x),且f(x)=ex+2x•f'(1),则f'(0)=1-2e.

分析 首先求出函数的导数f'(x),然后将x=1代入f'(1),再代入x=0,即可求出结果.

解答 解:f'(x)=ex+2f'(1),
则f′(1)=e+2f'(1),
则f'(1)=-e,
则f′(0)=1-2e,
故答案为:1-2e.

点评 本题考查了导数的运算,以及求函数值,对于简单题要细心,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=1-ex的图象与x轴相交于点P,则曲线在点P处的切线的方程为(  )
A.y=-e•x+1B.y=-x+1C.y=-xD.y=-e•x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={1,2,3,4},B={x|y=2x,y∈A},则A∩B=(  )
A.{2}B.{1,2}C.{2,4}D.{1,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得$(\overrightarrow{OP}+\overrightarrow{O{F_2}})•\overrightarrow{{F_2}P}=0$,其中O为坐标原点,且$|\overrightarrow{P{F_1}}|=3|\overrightarrow{P{F_2}}|$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,且椭圆C过点$({1,\frac{3}{2}})$.
(I)求椭圆C的标准方程;
(Ⅱ)若椭圆C的右顶点为A,直线l交椭圆C于E、F两点(E、F与A点不重合),且满足AE⊥AF,若点P为EF中点,求直线AP斜率的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为03,则剩下的四个号码依次是15,27,39,51.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.斜率为$\sqrt{3}$的直线l经过抛物线y2=2px(p>0)的焦点F,且交抛物线于A,B两点,若AB中点到抛物线准线的距离为4,则p的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合A={x||x-1|<2},B={x|$\frac{1}{9}$<3x<9},则A∩B=(  )
A.(-1,3)B.(-1,2)C.(-2,2)D.(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线C与双曲线$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{6}=1$有共同的渐近线,则双曲线C的离心率为$\frac{\sqrt{7}}{2}$或$\frac{\sqrt{21}}{3}$,若此双曲线C还过点M(2$\sqrt{2}$,$\sqrt{3}$),则双曲线C的方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

同步练习册答案