【题目】已知函数,其中为常数.
(1)若,求函数的极值;
(2)若函数在上单调递增,求实数的取值范围;
(3)若,设函数在上的极值点为,求证: .
【答案】(1)当时, 的极大值为,无极小值;(2) ;(3)证明见解析.
【解析】试题分析:(1)求导,利用导函数的符号变化得到函数的单调性,进而得到函数的极值;(2)求导,将函数在某区间上单调递增转化为导函数非负恒成立,分离参数,构造函数,将不等式恒成立问题转化为求函数的最值问题;(3)连续两次求导,分别通过研究导函数的符号变化研究函数的极值,再作差构造函数,将不等式恒成立问题转化为求函数的最值问题,再利用求导进行求解.
试题解析:(1)当时, ,定义域为,
,令,得.
极大值 |
当时, 的极大值为,无极小值.
(2),由题意对恒成立.
, ,
对恒成立,
对恒成立.
令, ,则,
①若,即,则对恒成立,
在上单调递减,
则, , 与矛盾,舍去;
②若,即,令,得,
当时, , 单调递减,
当时, , 单调递增,
当时, ,
.综上.
(3)当时, , ,
令, ,
则 ,令,得,
①当时, , 单调递减, ,
恒成立, 单调递减,且.
②当时, , 单调递增,
又 ,
存在唯一,使得, ,
当时, , 单调递增,
当时, , 单调递减,且,
由①和②可知, 在单调递增,在上单调递减,
当时, 取极大值.
, ,
,
又, , .
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn,若S9=81,a3+a5=14.
(1)求数列{an}的通项公式;
(2)设bn=,若{bn}的前n项和为Tn,证明:Tn<.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若关于x的不等式e2x﹣alnxa恒成立,则实数a的取值范围是( )
A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为 ,过点且斜率为的直线交曲线于两点,交圆于两点(两点相邻).
(Ⅰ)若,当时,求的取值范围;
(Ⅱ)过两点分别作曲线的切线,两切线交于点,求与面积之积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知,线段与弧、弧的长度之和为米,圆心角为弧度.
(1)求关于的函数解析式;
(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某船在海面处测得灯塔在北偏东方向,与相距海里,测得灯塔在北偏西方向,与相距海里,船由向正北方向航行到处,测得灯塔在南偏西方向,这时灯塔与相距多少海里?在的什么方向?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是异面直线,则以下四个命题:①存在分别经过直线和的两个互相垂直的平面;②存在分别经过直线和的两个平行平面;③经过直线有且只有一个平面垂直于直线;④经过直线有且只有一个平面平行于直线,其中正确的个数有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com