如图,已知四棱锥中,平面,底面是直角梯形,
且.
(1)求证:平面;
(2)求证:平面;
(3)若是的中点,求三棱锥的体积.
(1)证明过程详见解析;(2)证明过程详见解析;(3).
解析试题分析:本题主要以四棱锥为几何背景,考查线面平行、线面垂直以及三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、转化能力、计算能力.第一问,利用ABCD为直角梯形,所以得到AB//CD,利用线面平行的判定,得AB//平面PCD;第二问,在三角形ABC中,先利用余弦定理求出AC边长,再根据勾股定理判断,而,利用线面垂直的判定,平面PAC;第三问,由于平面ADC,所以M到平面ADC的距离为PA的一半,将转化为,作,在三角形ACB中,解出AE和CE的值,即AD和DC的值,即可得到直角三角形ADC的面积,从而利用三棱锥的体积公式计算体积.
试题解析:(1)底面是直角梯形,且,
, 1分
又平面 2分
平面 3分
∴∥平面 4分
(2),,
5分
则
∴ 6分
平面 ,平面
∴ 7分
又 8分
∴平面 9分
(3)在直角梯形中,过作于点,
则四边形为矩形, 10分
在中可得
故 11分
∵是中点,
∴到面的距离是到面
科目:高中数学 来源: 题型:解答题
在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.
(1)求证:AC⊥B1C;
(2)若D是AB中点,求证:AC1∥平面B1CD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱柱中,底面,底面为菱形,为与交点,已知,.
(1)求证:平面;
(2)求证:∥平面;
(3)设点在内(含边界),且,说明满足条件的点的轨迹,并求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在侧棱垂直底面的四棱柱ABCDA1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.
(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF.
(2)求BC1与平面B1C1EF所成的角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com