精英家教网 > 高中数学 > 题目详情
若函数在(1,+∞)上单调递增,则实数a的取值范围是( )
A.(-∞,-1]
B.[-1,+∞)
C.(-∞,1]
D.[1,+∞)
【答案】分析:先利用导数求函数的单调增区间,求导,令导数大于0,因为函数在(1,+∞)上单调递增,所以当
x>1时,导数横大于等于0,再据此判断参数a的范围.
解答:解:∵,∴
∵函数在(1,+∞)上单调递增,
∴当x∈(1,+∞),y′≥0恒成立
即当x∈(1,+∞),恒成立
∴a≥-1,a的取值范围是[-1,+∞)
故选B
点评:本题主要考查了应用导数求函数的单调区间,属于导数的常规题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+p+3.
(1)若函数在区间[-1,1]上存在零点,求实数p的取值范围;
(2)问是否存在常数q(q≥0),当x∈[q,10]时,f(x)的值域为区间D,且D的长度为12-q.(注:区间[a,b](a<b)的长度为b-a).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3:
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax2+bx+c,
(1)若函数在x=-1和x=3时取得极值,求a,b的值.
(2)在(1)的条件下,当x∈[-2,6]时,f(x)<2C恒成立,求C的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+1.
(1)若函数f(x)在区间(0,1)和(1,3)上各有一个零点,求a的取值范围;
(2)若函数在区间[-1,2]上有最小值-1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3+x2-x,a∈R

(1)若函数 在x=1处的切线l与直线y=4x+3平行,求实数a的值;
(2)若函数f(x)在(2,+∞)上存在单调递增区间,求实数a的取值范围;
(3)在(1)的条件下,设函数g(x)=|f(x)-x2+x-1|+
1
3
x
,若方程g(x)-m=0在区间[-2,2]上有两个不相等的实数根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案