精英家教网 > 高中数学 > 题目详情
20.函数f(x)=x2-4x(x∈[0,5])的值域为(  )
A.[-4,+∞)B.[-4,5]C.[-4,0]D.[0,5]

分析 f(x)=x2-4x=(x-2)2-4,可得函数f(x)在x∈[0,2]上单调递减,在x∈[2,5]上单调递增.即可得出.

解答 解:f(x)=x2-4x=(x-2)2-4,
∴函数f(x)在x∈[0,2]上单调递减,在x∈[2,5]上单调递增.
∴当x=2时,函数f(x)取得最小值,f(2)=-4.
又f(0)=0,f(5)=5,
可得函数f(x)的最大值为5.
∴函数f(x)的值域为[-4,5].
故选:B.

点评 本题考查了二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.cos$\frac{π}{12}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知三棱锥O-ABC中,∠BOC=90°,OA⊥平面BOC,其中AB=AC=$\sqrt{7}$,BC=$\sqrt{11}$,O,A,B,C四点均在球S的表面上,则球S的表面积为$\frac{25π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=2cos(2x-$\frac{π}{4}$),x∈[0,$\frac{π}{2}$),则f(x)的值域为(-$\sqrt{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右准线与x轴交于点A,点B的坐标为(0,a),若椭圆上的点M满足$\overrightarrow{AB}$=3$\overrightarrow{AM}$,则椭圆C的离心率值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.计算:23+log25=40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知命题P:$\lim_{n→∞}{c^n}=0$,其中c为常数,命题Q:把三阶行列式$|{\begin{array}{l}{\;5}&2&{3\;}\\{\;x-c}&6&{4\;}\\{\;1}&8&{x\;}\end{array}}|$中第一行、第二列元素的代数余子式记为f(x),且函数f(x)在$({-∞\;,\;\frac{1}{4}}]$上单调递增.若命题P是真命题,而命题Q是假命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知an=n•2n,求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知a>0且a≠1,函数f(x)=loga(x+2)+1的反函数恒过定点A,g(x)=ax+2+2的反函数恒过定点B,A、B两点在一个一次函数图象上,则这个一次函数的解析式为y=-$\frac{1}{2}$x-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案