精英家教网 > 高中数学 > 题目详情
已知P:|2x-3|>1;q:x2-3x+2≥0,则p是q的(  )
分析:由已知中的条件,分别求出满足条件p,q的集合P,Q,然后根据“谁小谁充分,谁大谁必要”的原则,可判断出命题p与命题q的关系,进而得到答案.
解答:解:∵P:|2x-3|>1
∴x>2或x<1
∵q:x2-3x+2≥0
∴x≥2或x≤1
∵{x|x>2或x<1}?{x|x≥2或x≤1}
∴命题q是命题p的必要不充分条件
∴┑p是┑q的必要不充分条件
故选B.
点评:本题考查的知识点是必要条件,充分条件与充要条件的判断,熟练掌握充要条件的定义,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知p:|2x-3|<1,q:x(x-3)<0,则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P:|2x-3|>1;q:
1x2+x-6
>0
,则?p是?q的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:|2x-3|<1;q:
1
x2+x-6
<0
,则q是p的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:|2x-3|>1,q:log 
1
2
(x2+x-5)<0,则?p是?q的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案