精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x),对任意x∈R,都有f(x+16)=f(x)+f(8)成立,若函数f(x+1)的图象关于直线x=-1对称,则
f(2008)=(  )
分析:由函数f(x+1)的图象关于直线x=-1对称且由y=f(x+1)向右平移1个单位可得y=f(x)的图象可知函数y=f(x)的图象关于x=0对称即函数y=f(x)为偶函数,在已知条件中令x=-8可求f(8)及函数的周期,利用所求周期即可求解
解答:解:∵函数f(x+1)的图象关于直线x=-1对称且把y=f(x+1)向右平移1个单位可得y=f(x)的图象
∴函数y=f(x)的图象关于x=0对称,即函数y=f(x)为偶函数
∵f(x+16)=f(x)+f(8)
令x=-8可得f(8)=f(-8)+f(8)=2f(8),则f(8)=0
从而可得f(x+16)=f(x)即函数是以16为周期的周期函数
∴f(2008)=f(125×16+8)=f(8)=0
故选A
点评:本题主要考出了函数的图象的平移及函数图象的对称性的应用,利用赋值求解抽象函数的函数值,函数周期的求解是解答本题的关键所在
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案