精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象过点,且在点处的切线方程.

1求函数的解析式;

2求函数的图象有三个交点,求的取值范围.

【答案】12.

【解析】

试题分析:1代入函数解析式可得的值.将代入直线可得的值.再由切线方程可知切线斜率为,由导数的几何意义可知,联立方程组可得的值;2可将问题转化为有三个不等的实根问题,再通过参变量分离转化为图象有三个交点.然后对求导判单调性画出图象,数形结合分析可得出的范围.

试题解析:解:

1的图象经过点,知.

所以,则

由在处的切线方程是

,所以,即,解得

故所求的解析式是.

2因为函数的图象有三个交点有三个根,

有三个根.

,则的图象与图象有三个交点.

1

2

+

0

-

0

+

极大值

极小值

的极大值为的极小值为2,因此

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a (1,1,0)b(1,0,2),且kab2ab垂直,则k的值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当a=1,求函数fx)在[1,e]上的最小值和最大值;

2)当a≤0,讨论函数fx)的单调性;

3)是否存在实数a,对任意的x1,x20,+∞,x1≠x2,都有恒成立.若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数上不具有单调性,求实数的取值范围;

2)若.

)求实数的值;

)设,当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,直线的参数方程为为参数,在极坐标系与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴中,圆的方程为.

1求圆的直角坐标方程;

2设圆与直线交于点,若点的直角坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设,求的单调区间;

2)若处取得极大值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn.已知a1=10,a2为整数且SnS4.

1求{an}的通项公式;

2设bn求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图为一简单组合体,其底面ABCD为正方形,平面,且=2 .

1答题指定的方框内已给出了该几何体的俯视图,请在方框内画出该几何体的正视图和侧视图;

2求证:平面.

3求四棱锥B-CEPD的体积;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校对任课教师年龄状况和接受教育程度(学历)部分结果(人数分布)如表:

学历

35岁以下

35~50岁

50岁以上

本科

80

30

20

研究生

x

20

y

(1)用分层抽样的方法在35~50岁年龄段的教师中抽取一个容量为5的样本将该样本看成一个总体从中任取2人求至少有1人的学历为研究生的概率;

(2)若按年龄状况用分层抽样的方法抽取N个人其中35岁以下48人50岁以上10人再从这N个人中随机抽取出1人此人的年龄为50岁以上的概率为求xy的值.

查看答案和解析>>

同步练习册答案