精英家教网 > 高中数学 > 题目详情
下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A、y=
x+1
B、y=e-x
C、y=-x2+1
D、y=lg|x|
考点:函数奇偶性的判断,函数单调性的判断与证明
专题:计算题,函数的性质及应用
分析:逐一考查各个选项中函数的奇偶性、以及在区间(0,+∞)上的单调性,从而得出结论.
解答: 解:对于A.由于y=
x+1
定义域[-1,+∞)不关于原点对称,不是偶函数,故排除A;
对于B.函数是指数函数,不是偶函数,故B不满足条件;
对于C.定义域为R,f(-x)=-(-x)2+1=f(x),满足f(-x)=f(x),是偶函数,
由二次函数的性质可得(0,+∞)上递减,故C正确;
对于D.f(x)=lg|x|是偶函数,且在区间(0,+∞)上是单调递增,故排除D.
故选C.
点评:本题主要考查函数的单调性和奇偶性的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:对于定义域D内的任意两个x1,x2(x1≠x2)都存在常数k,使得|f(x1)-f(x2)|<k|x1-x2|成立,则称f(x)在D上为“谐函数”,若f(x)=
x
在(4,+∞)上为“谐函数”,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:tan10°+tan50°+
3
tan10°tan50°=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},则∁U(A∪B)=(  )
A、{3,4,5,6,7,8}
B、{7,8,9}
C、{7,8}
D、{6,7,8,9}

查看答案和解析>>

科目:高中数学 来源: 题型:

写出命题“若方程ax2-bx+c=0(a≠0)的两根均大于0,则ac>0”的一个逆否命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线a过P(0,-1),且与以A(2,3)、B(-3,2)为端点的线段相交,则直线a的斜率k的取值范围是(  )
A、(-∞,-1]∪[2,+∞)
B、(-∞,-1]
C、[2,+∞)
D、[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合U={1,2,3,4,5,6},集合A={1,2,5},集合B={1,3,4},则(∁UA)∩B=(  )
A、{1}
B、{3,4}
C、{2,5}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=20.3,b=0.32,c=log20.3,则a,b,c由小到大的顺序为
 
.(请用“<”连接)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=x2+(a+1)2+|x+a-1|(a∈R).
(1)若a为大于2的常数,求函数y的最小值;
(2)若函数y的最小值大于3,求实数a的取值范围.

查看答案和解析>>

同步练习册答案