精英家教网 > 高中数学 > 题目详情

【题目】如图,边长为3的等边三角形ABCEF分别在边ABAC上,且MBC边的中点,AMEF于点O,沿EF,折到DEF的位置,使

1)证明平面EFCB

2)试在BC边上确定一点N,使平面DOC,并求的值.

【答案】1)证明见解析 2

【解析】

1)要证平面EFCB,即证平面EFCB的两条相交直线,由勾股定理可证明,再由线段的比例关系与等边三角形的性质,易证,即可得证;

2)连接OC,过EBCN,易证四边形OENC为平行四边形,再由相似三角形可得,结合即可求解对应的比例关系

解:(1)证明:在中,易得

又∵

MBC中点,

平面EBCF

2

连接OC,过EBCN

平面DOC

∴四边形OENC为平行四边形,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱锥PABC中,ACBCACBC2PAPBPC3OAB中点,EPB中点.

1)证明:平面PAB⊥平面ABC

2)求点B到平面OEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,平面平面的中点,.

(1)求二面角的大小;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1),求的单调区间;

(2)若当恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)若曲线在点处的切线与直线垂直,求的单调区间;

2)若函数有两个极值点,求实数的取值范围;

3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数fx)=cos2x)的图象向左平移个单位长度后,得到函数gx)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)

gx)的最小正周期为4π

gx)在区间[0]上单调递减;

gx)图象的一条对称轴为x

gx)图象的一个对称中心为(0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥A-BCDE,其中AC=BC=2ACBCCD//BECD=2BECD⊥平面ABCFAD的中点.

1)求证:EF//平面ABC

2)设MAB的中点,若DM与平面ABC所成角的正切值为,求平面ACD与平面ADE夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的方程为(a1x+y+a+3=0,(aR).

1)若直线l在两坐标轴上截距的绝对值相等,求直线l的方程;

2)若直线l不经过第一象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】读书可以让人保持思想活跃,让人得到智慧启发,让人滋养浩然之气2018年第一期中国青年阅读指数数据显示,从供给的角度,文学阅读域是最多的,远远超过了其他阅读域的供给量.某校采用分层抽样的方法从1000名文科生和2000名理科生中抽取300名学生进行了在暑假阅读内容和阅读时间方面的调查,得到数据如表:

文学阅读人数

非文学阅读人数

调查人数

理科生

130

文科生

45

合计

1)先完成上面的表格,并判断能否有90%的把握认为学生所学文理与阅读内容有关?

2300名被调查的学生中,随机进取30名学生,整理其日平均阅读时间(单位:分钟)如表:

阅读时间

男生人数

2

4

3

5

2

女生人数

1

3

4

3

3

试估计这30名学生日阅读时间的平均值(同一组中的数据以这组数据所在区间中点的值作代表)

3)从(2)中日均阅读时间不低于120分钟的学生中随机选取2人介绍阅读心得,求这两人都是女生的概率.

参考公式: ,其中.

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案